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Ecography Around the world, ecological communities are becoming more similar to one another
in a process known as biotic homogenization — an increase in similarity among com-
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. munities over time. While biotic homogenization has been widely studied among spa-
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tial communities, very little attention has been paid to beta diversity between seasonal
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Editor-in-Chief: Miguel Aratjo ecosystems, seasonality plays a major role in structuring ecological communities, but
Accepted 27 May 2025 anthropogenic pressures are altering community composition. We analyze 40 years of

data to study changes in beta diversity between winter and breeding bird communities
in the northeastern US. We find evidence of taxonomic, phylogenetic, and functional
homogenization between winter and breeding bird communities driven by decreasing
turnover. Changes in phylogenetic diversity largely mirrored changes in taxonomic
diversity, but functional diversity did not, with functional richness increasing in both
seasons despite species richness increasing only in winter. Functional homogenization
was driven by 1) decreasing occurrence of winter boreal finches and breeding season
aerial insectivores, which reduced the functional space unique to either season, and 2)
increasing occurrence of raptors, mergansers, wild turkey, and other functionally dis-
tinct species, which expanded the total functional space of both seasons and the shared
functional space between seasons. Together, these shifts demonstrate a decline in the
distinctiveness of functional space between seasons. Our study is one of the first to
describe functional and phylogenetic homogenization between seasons and highlights
the importance of considering seasonal homogenization and of using multiple facets
of diversity to describe and understand biotic homogenization.
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Introduction

Anthropogenic pressures such as climate change, land-use
change, habitat fragmentation, and the introductions of non-
native species are altering the ecological and evolutionary
dynamics which maintain biodiversity (Singh 2002, IPBES
2019, Jaureguiberry et al. 2022). Consequently, many species
assemblages in human-modified landscapes are experiencing
biotic homogenization — increasing similarity among mul-
tiple assemblages over time (McKinney and Lockwood 1999,
Olden 2006). Biotic homogenization, which can be quanti-
fied as a decrease in beta diversity, may apply to changes in
taxonomic, phylogenetic, or functional diversity (Fig. 1), and
evaluating these aspects concurrently can provide insight into
the underpinnings of community responses (Olden 20006,
Baiser and Lockwood 2011, Baselga and Orme 2012).

The beta diversity metrics used to characterize taxonomic,
phylogenetic, and functional biotic homogenization all cor-
respond to commonly used alpha diversity metrics (Fig. 1).
Species richness is one of the most widely used taxonomic
alpha diversity metrics (Whittaker et al. 2001), and taxo-
nomic beta diversity metrics such as the Serensen dissimilarity
index use the same species presence—absence data to describe
the degree to which species are shared between communities
(Serensen 1948). Phylogenetic richness (also known as Faith’s
phylogenetic diversity) describes the sum of phylogenetic
branch lengths represented in a community (i.e. the total sum
of evolutionary history; Faith 1992). Phylogenetic beta diver-
sity, then, describes the degree of shared evolutionary history
between communities (Lepricur et al. 2012). Functional
richness, one common metric for quantifying functional
alpha diversity, describes the volume of functional space filled
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Figure 1. Taxonomic, phylogenetic, and functional beta diversity, with examples of turnover and nestedness. Taxonomic beta diversity (a,
d, g) describes shared species between a pair of communities, such as a winter community and a breeding community. Phylogenetic beta
diversity (b, e, h) describes shared evolutionary branches between a pair of communities. Functional beta diversity (c, f, i) describes shared
functional space between a pair of communities, i.e. the overlap in the functional space occupied by communities. Turnover (a—c) quantifies
dissimilarity between communities due to replacement. In these examples, the two communities have equal species richness, phylogenetic
richness, and functional richness, but there are no shared species, branches, or functional space between communities. All species, branches,
and functional space are replaced between the pair of communities. Nestedness (d—f) quantifies dissimilarity between communities due to
differences in richness. In these examples, one community is entirely nested within the other, yet the communities are dissimilar because
they differ in species richness, phylogenetic richness, and functional richness. Beta diversity is usually a combination of both turnover and
nestedness (g—i). In these examples, richness of one community is higher than the other (nestedness), yet there are still unique species,
branches, and functional spaces of the community with lower richness that are not nested within the community with higher richness
(turnover).
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by a community (i.e. the volume filled by a convex hull in
multidimensional functional space; Cornwell et al. 20006).
Functional beta diversity describes the ovetlap of functional
spaces filled by a given pair of communities (Villéger et al.
2013). Homogenization is then the increasing proportion of
shared species (taxonomic homogenization), shared branches
(phylogenetic homogenization), or shared functional space
(functional homogenization) over time (Olden 2000).

Additionally, taxonomic, phylogenetic, and functional
beta diversity can all be decomposed into their respective
components of turnover and nestedness (Baselga 2010,
Cardoso et al. 2014). Turnover here refers to the replacement
of species, phylogenetic lineages, or functional space between
communities (Fig. la—c). Nestedness, in contrast, refers to
differences in richness between communities (Fig. 1d-f).
Biotic homogenization, then, may be driven by either
decreasing turnover (a decrease in unique species, branches,
or functional space, after accounting for differences in rich-
ness) or decreasing nestedness (a reduction in the discrepancy
of richness). Partitioning out these components allows a bet-
ter understanding of the drivers behind biotic homogeniza-
tion (Baeten et al. 2012).

Biotic homogenization has been widely observed in terms
of decreasing beta diversity across space (Baiser et al. 2012,
Finderup Nielsen et al. 2019), but it has rarely been exam-
ined in terms of beta diversity across seasons (Curley et al.
2024). Seasonality is responsible for major changes in eco-
logical communities throughout the year, as species distri-
butions shift in response to abioticallydriven cyclic changes
in resource availability (Ng et al. 2022). Seasonal cycles of
temperature, precipitation, and other abiotic factors are par-
ticularly important for migratory species which respond to
seasonal cues to undergo these journeys (Youngflesh et al.
2021). In the face of rapid environmental change, individual
species have responded by changes in the timing of migra-
tory phenology (phenological mismatches), shifts in migra-
tion routes, and changes in breeding phenology, as well
as poleward and elevational shifts (Parmesan et al. 1999,
Tottrup et al. 2008, Thomas 2010, Visser et al. 2012). At
the community level, these species-specific responses may
lead to novel species interactions, such as new competitive
interactions for resources in breeding or non-breeding habi-
tats (Stralberg et al. 2009, Princé and Zuckerberg 2015). For
example, climate change has led to increased direct competi-
tion between resident great tits Parus major and migratory
European pied flycatchers Ficedula hypoleuca (Samplonius
and Both 2019). These novel interactions can reduce the
stability of historical competitive interactions and have cas-
cading impacts on establishment and local extinction or
extirpation dynamics (Jiguet et al. 2011, Blois et al. 2013).

Over recent decades, the taxonomic composition of win-
tering and breeding avian communities in North America
has changed substantially (Princé and Zuckerberg 2015,
Curley et al. 2022). Winter and breeding communities
are both increasingly composed of bird species associated
with warmer temperatures and changing precipitation pat-
terns (Princé and Zuckerberg 2015, Curley et al. 2022,

Anderson et al. 2023). For example, species such as Carolina
wren Thryothorus ludovicianus, northern cardinal Cardinalis
cardinalis, and tufted titmouse Baeolophus bicolor have
increased in their abundances while also expanding their
breeding ranges northward in the eastern US, presumably
tracking changes in temperature and precipitation as well as
increasing supplemental feeding at bird feeders (Robb et al.
2008, Curley et al. 2022). However, these shifts in distribu-
tion are not uniform across all bird species. Generalist species
are shifting their ranges faster than less-adaptable special-
ist species (Huang et al. 2023). This process can lead to the
homogenization of bird communities, where the same few
adaptable species become increasingly dominant across wider
regions (Gaiizére et al. 2020). Furthermore, winter commu-
nities are changing more rapidly than breeding communities
(Cutley et al. 2020, Lehikoinen et al. 2021). These ongoing
changes may be contributing to an increasing similarity in
species composition (taxonomic homogenization) between
wintering and breeding communities that has been observed
over the last several decades (Curley et al. 2024).

While Curley et al. (2024) observed seasonal taxonomic
homogenization, it remains unclear how these changes in
taxonomic diversity translate into changes at the phyloge-
netic or functional levels. As species composition changes,
phylogenetic and functional composition also necessarily
change, so taxonomic, phylogenetic, and functional diver-
sity are often highly correlated, yet differences among these
diversity metrics provide a fuller picture of how diversity is
changing (Baiser and Lockwood 2011, Schipper et al. 2016,
Tsianou et al. 2021). For example, phylogenetic homog-
enization may be stronger than taxonomic homogeniza-
tion when the species that are lost are evolutionarily unique
(Nowakowski et al. 2018). Differences in phylogenetic rich-
ness usually reflect differences in evolutionary history among
regions (Voskamp et al. 2017, Le Bagousse-Pinguet et al.
2019), but winter and breeding birds occupy in the same
region, so it is unclear whether there would be phylogenetic
biases in changing seasonal species composition. It is more
likely, though still untested, that there would be functional
biases in changing seasonal species composition (Baiser and
Lockwood 2011). Functional diversity of North American
birds is strongly seasonal, but seasonal patterns of functional
and taxonomic diversity are decoupled (Jarzyna and Stagge
2023). For example, in the eastern US, species richness
declines in winter while functional richness increases (Jarzyna
and Stagge 2023). Northern American winter avian commu-
nities have undergone significant functional reorganization in
recent decades (Quimbayo et al. 2024), though it is unclear
whether these functional changes are leading to conver-
gence with breeding communities. Seasonal functional beta
diversity is highest among bird communities where climate
seasonality is strongest (Keyser et al. 2024), but warming
winters that decrease climate seasonality could erode seasonal
functional differences and lead to functional homogeniza-
tion. Comparing taxonomic, phylogenetic, and functional
beta diversity can provide a more nuanced understand-
ing of the consequences of homogenization on community
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resilience, particularly under the continued and accelerated
pressures of human-induced environmental change (Baiser
and Lockwood 2011, Oliver et al. 2015). Furthermore,
understanding which ecological functions are changing is
important for managing avian communities. Yet no studies
of homogenization between seasons (e.g. comparing winter
versus breeding communities) have analyzed phylogenetic or
functional homogenization.

Here, we use two community science datasets, the
National Audubon Society Christmas Bird Count (CBC;
National Audubon Society 2020) and the North American
Breeding Bird Survey (BBS; Sauer et al. 2021), to quantify
changes in taxonomic, phylogenetic, and functional beta
diversity in the northeastern US, where CBC and BBS data
have been collected consistently for more than 40 years.
Building on previous work that observed taxonomic seasonal
homogenization in this region (Cutley et al. 2024), we assess
how phylogenetic and functional homogenization compare
to taxonomic homogenization, using a more spatially explicit
approach which allows us to estimate spatial variation in
homogenization within the Northeast. We further investigate
which components of beta diversity (turnover and nested-
ness) and which species (including which types of species) are
contributing most to these trends. We predict that changes
in species composition will be functionally biased but not
phylogenetically biased, so phylogenetic homogenization will
reflect trends in taxonomic homogenization while functional
homogenization will differ from taxonomic homogenization
patterns. We also investigate which species and which eco-
logical functions are driving changes in functional diversity.

Material and methods

Bird survey data

We used data from the National Audubon Society Christmas
Bird Count (CBC) and the North American Breeding Bird
Survey (BBS) for our winter and breeding bird assemblages,
respectively. Each of these monitoring programs collects
long-term data on avian abundances and offers broad geo-
graphic coverage, though they differ in survey design and
effort. CBC count surveys are conducted annually in late
December through early January within designated count
circles, which are non-randomly selected and proposed by
local coordinators. The number of participants in CBC circles
varies widely, and participant skill levels range from begin-
ner to expert. Each count circle is centered at a latitude and
longitude point with a diameter of 24.14 km (Soykan et al.
2016). BBS surveys are roadside transect surveys conducted
annually between May and June, meant to coincide with
the peak of the breeding season of North American birds.
Locations are typically randomized within delineated physio-
graphic regions to ensure balanced coverage between differ-
ent habitat types. Each route is approximately 39.4 km long
and partitioned into 50 evenly spaced 3-min point count
locations, where 1-2 trained observers record all individual
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birds seen or heard within a 0.4 km radius of their loca-
tion (Pardieck et al. 2020). We confined our analysis to the
northeastern US including Connecticut, Delaware, Maine,
Maryland, Massachusetts, New Hampshire, New Jersey, New
York, Pennsylvania, Rhode Island, and Vermont (Fig. 2). We
selected this region because of the consistency with which
CBC and BBS data were collected. We used 40 years of
CBC and BBS data, from the winter season of 1979-1980
(December—January) through the breeding season (May—
June) of 2019. Due to the interruption of data collection in
2020 due to the COVID-19 pandemic, we did not include
surveys from 2020 onward.

We cross-referenced common and scientific names
between BBS and CBC and created a combined standard-
ized species list following the eBird taxonomy, removing
all hybrids and unidentified individuals. Subspecies were
grouped at the species level. While CBC and BBS both col-
lect count data that can be used to calculate relative abun-
dance, relative abundance is only comparable among surveys
using the same methodology, so CBC relative abundance and
BBS relative abundance are not directly comparable. Despite
this limitation, the longevity of CBC and BBS make these
excellent datasets for studying seasonal homogenization. To
directly compare CBC and BBS data, we converted CBC and
BBS species abundances to presence—absence data, which was
later used to model occurrence in both seasons.

Grid cell assemblages

We created a grid of equal-area hexagons with 50 km edges
(approximately 6495 km? in area) that fully covered the states
in our study region. We retained cells that had at least one
winter survey and at least one breeding survey for each of
the 40 years, which left us with 57 cells, 9052 CBC winter
surveys, and 10 099 BBS breeding surveys (Fig. 2).

We used presence—absence data from surveys to model
occurrence for each grid cell and each year, running single-
species occurrence models for both winter and breeding. To
exclude very rarely detected species, we ran winter occur-
rence models on species detected in > 1% of included CBC
surveys, and we ran breeding occurrence models on species
detected in > 1% of included BBS surveys.

For each species, the winter occurrence model was a logis-
tic regression with species presence in a survey (0 or 1) as the
response variable, log party hours as a covariate, and random
intercepts for year, grid cell, and survey location. These mod-
els were based on standard models used to account for detec-
tion in CBC data (Soykan et al. 2016, Saunders et al. 2022).
We ran mixed effects models using the ‘glmmTMB’ package
ver. 1.1.7 (Brooks et al. 2017). Then, using predicted occur-
rence probability from these models and the pROC’ package
ver. 1.18.4 (Robin et al. 2011), we identified optimal species-
specific occurrence probability thresholds. For each combi-
nation of cell and year, we calculated the mean occurrence
probability of each species for all surveys in that cell and year.
We then used our species-specific thresholds to categorize
each species as ‘present’ or ‘absent’ for each combination of
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Figure 2. Hexagonal grid cell assemblages in the northeastern US. C
one CBC winter survey for each year from 1980 through 2019.

cell and year. This provided the grid cell-level winter species
assemblages that we used for further analyses. These analyses
and all subsequent analyses were performed using R ver. 4.2.1
(www.r-project.org).

Our process for calculating grid cell-level breeding spe-
cies assemblages was similar to our process for winter assem-
blages. For each species, the breeding occurrence model was
a logistic regression with species presence in a survey (0 or
1) as the response variable, whether it was the observer’s first
year on the route (0 or 1) as a covariate, and random inter-
cepts for year, grid cell, and each combination of route and
observer. These models were based on standard models used
to account for detection in BBS data (Sauer and Link 2011).
As with the winter data, we used ROC curves to identify
species-specific thresholds, calculated mean occurrence prob-
ability of each species for all surveys in a given cell and year,
and used the threshold to define present and absent species
for each combination of cell and year. This provided the grid
cell-level breeding species assemblages that we used for fur-
ther analyses.

Phylogenetic and functional data

We created an ultrametric consensus tree (including consen-
sus branch lengths) based on 1000 credible phylogenies of
all bird species (Jetz et al. 2012), which we used to calcu-
late phylogenetic diversity metrics. For functional traits, we
used three types of trait data from three databases: 1) seasonal

ells were retained that had at least one BBS breeding survey and at least

diet data from SAviTraits (Murphy et al. 2023), 2) foraging
strata data from EltonTraits (Wilman et al. 2014), and 3)
morphological traits from AVONET (Tobias et al. 2022).
SAviTraits includes diet category percentage data varying
by month. We calculated breeding and winter diets as the
average diet percentages between May and June (BBS survey
months) or December and January (CBC survey months),
respectively, using eight diet categories: invertebrates, fish,
vertebrates, carrion, fruit, nectar, seeds, and other plant parts.
EltonTraits includes percentage data for seven foraging strata
categories: water below surf, water around surf, ground,
understory, mid to high forest levels, canopy, and aerial.
AVONET includes morphological traits which are associ-
ated with ecological niches and which influence the diet,
locomotion, and foraging of a species (Tobias et al. 2022).
Because most of these traits are strongly correlated with body
mass, we calculated relative traits as the residuals of linear
regressions of log-transformed traits against log-transformed
body mass. The eleven morphological traits we used were:
log body mass, relative beak length (culmen), relative beak
length (nares), relative beak width, relative beak depth, rela-
tive tarsus length, relative Kipps distance, hand-wing index,
relative wing length, relative secondary length, and relative
tail length. Thus, we had a total of 26 functional traits. While
there are many additional traits we could have chosen, such
as life history traits, we selected these traits because they best
capture the role and function of species within a community
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(Wilman et al. 2014), especially in terms of trophic interac-
tions, rather than the demographic performance of individu-
als. That is, we are interested in describing the functions of
communities, rather than the functions of individuals. We
used the ‘gawdis’ package ver. 0.1.5 (de Bello et al. 2021) to

analytically calculate a distance matrix of species using our
26 functional traits. Then, we used the ‘mFD’ package ver.
1.0.5 (Magneville et al. 2022) to create a four-dimensional
functional trait PCoA of all bird species (Fig. 3). Because
each species has both breeding diet data and winter diet data,
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Figure 3. Functional PCoA space used to calculate functional diversity. Axes are labeled with the traits associated with these functional axes.
Traits used to calculate functional space included 8 diet categories, 7 foraging strata categories, and 11 morphological traits. Diet data varied
by season, so each species is plotted both with its breeding diet and with its winter diet. Functional space is 4-dimensional, but only certain
pairs of axes are shown here. Vertex species for the convex hull of all species are labeled.
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species with seasonally varying diets have different breeding
and winter PCoA coordinates. We used four dimensions as
including more dimensions was computationally intractable.
This functional space was then used to calculate functional
beta diversity and functional richness.

Beta diversity

We calculated taxonomic, phylogenetic, and functional beta
diversity between the winter assemblage and the breeding
assemblage for each combination of grid cell and year. We
calculated taxonomic beta diversity using the beta.pair func-
tion from the ‘betapart’ package ver. 1.5.6 (Baselga and Orme
2012). We calculated phylogenetic beta diversity using the
phylo.beta.pair function, also from the ‘betapart’ package. We
calculated functional beta diversity using the beta.fd. multidim
function from the ‘mFD’ package ver. 1.0.5 (Magneville et al.
2022). In all cases, we used the Sorensen family of dissimilar-
ity indices. We calculated total beta diversity, turnover, and
nestedness for all three facets of diversity (Fig. 1), resulting in
nine beta diversity metrics (Fig. 4).

To assess changes in beta diversity over time, we ran
mixed-effects models with year as a covariate and grid cell
as a random effect with random slopes and intercepts. We
ran nine separate models for each combination of diversity
facet (taxonomic, phylogenetic, functional) and beta diver-
sity component (total beta diversity, turnover, nestedness) as
response variables. We ran all these models as beta regressions
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because all values were between 0 and 1 and linear regressions
did not fit the data well. Taxonomic nestedness included true
zeros (when winter and breeding species richness were equal),
which beta regression does not allow, so we ran a zero-inflated
beta regression for this metric.

Richness

To help interpret beta diversity trends, we calculated taxo-
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We calculated phylogenetic richness using the pd function
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response variables.

Occurrence trends and functional changes
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Figure 4. Changes in beta diversity between winter and breeding communities over 40 years. (a) Beta diversity trends over time. Significant
decreases in beta diversity (homogenization) are indicated by red lines. For each year, mean beta diversity values across cells are plotted, with
error bars representing standard deviation, transformed back from the logit scale. (b) Beta diversity trends among grid cells. The slopes for
each grid cell are the random slopes in the mixed-effects models, representing the predicted change in beta diversity between winter and

breeding communities within the grid cell.

Page 7 of 14

25U601] SUOLLLLIOD BAER.ID) 3 |ceatddle a1 Aq peuanoB a2 Sajo1Ie WO 98 J0'Sa[N1 10} ARic]1 2UIIUO AB]IA UO (SO 1 IPLOD-PUE-SUWLBI LD B 1M AReJql1[pu UO//SAIY) SUONIPUCD PU S 13U 05 *[5202/90/T] Uo Aiq1 aulluo Aa|1m *AISAILN aX1S UeBIDIN AQ £T220'60%9/Z00T'0T/10p/LLI00" A5 | AT g1 U1 lUO'S eLINO [0sU//Scy Wo1 popeo|umog ‘0 *2850009T



as a linear covariate. Due to the high number of tests, we
identified significantly increasing or decreasing species using
a Bonferroni correction, with a set to 0.05 divided by the
total number of species in our dataset (269 species).

We identified shifts in functional space by plotting the
convex hulls of winter and breeding assemblages in the first
and last decade of our study. For each cell, we created assem-
blages consisting of species which occurred in the cell for
the majority of either the first or last decade (i.e. > 5 years).
Then, we plotted the two-dimensional convex hulls for each
assemblage, where darker regions represent greater overlap of
convex hulls and a higher proportion of assemblages occupy-
ing that region of functional space (Supporting information).
By comparing the density of occupied functional space, we
identified differences in functional diversity between winter
and breeding assemblages as well as shifts in functional space
between the first and last decade.

To distinguish which species were responsible for changes
in functional space, we ran a post hoc analysis to determine
which species served as vertices for assemblage convex hulls
more or less often over time. For each combination of year
and cell, and for both winter and breeding, we used the
‘mFD’ package ver. 1.0.5 (Magneville et al. 2022) to obtain
a list of the species at the vertices of the convex hull for that
assemblage. Then, for each species, we ran logistic regressions
with vertex (0 or 1) as the response variable and year as a
covariate, with separate models for winter and breeding. As
with occurrence, we used a Bonferroni correction to assess

significance. Species that serve as vertices more often over
time and which also have increasing occurrence trends are
likely responsible for the expansion of functional space over
time, while species that serve as vertices less often over time
and which also have decreasing occurrence trends are likely
responsible for the contraction of functional space. Certain
species are highlighted in the main text figures, but all vertex
species are plotted in the Supporting information.

Results

Taxonomic homogenization

Across the northeastern US, taxonomic beta diversity
decreased from 1980 to 2019 (-0.086 + 0.011, p < 0.001;
Fig. 4a) driven by decreasing turnover (-0.090 + 0.014, p <
0.001; Fig. 4a), meaning that fewer species are being replaced
between seasons. Birds that only occur in the breeding season
have become rarer, while birds that occur in both the breed-
ing season and winter are occurring have become more com-
mon in both seasons (Supporting information). The steepest
declines in taxonomic beta diversity and turnover were in
inland regions, specifically northern Pennsylvania and south-
western New York (Fig. 4b). Species richness of winter com-
munities increased (2.93 + 0.34, p < 0.001), while species
richness of breeding communities did not significantly
change across the region as a whole (0.00 + 0.53, p=0.999;
Fig. 5a), though breeding species richness increased in the
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Figure 5. Temporal and spatial richness patterns of breeding and winter communities. (a) Richness trends over time. Significant increases in
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southwestern portion of our study area and decreased in the
northeastern portion (Fig. 5b). Along the coast, species rich-
ness tends to be higher in winter than in the breeding season,
though breeding species richness is higher than winter spe-
cies richness in inland New England (Fig. 5¢). The difference
in species richness between breeding and winter communi-
ties did not significantly change over time, so there was no
change in taxonomic nestedness across the region (0.005 =+
0.031, p=0.863; Fig. 4).

Phylogenetic homogenization

Phylogenetic beta diversity decreased from 1980 to 2019
(-0.071 + 0.010, p < 0.001), driven by decreasing turnover
(-=0.076 + 0.013, p < 0.001) rather than nestedness (-0.006
+ 0.039, p=0.871; Fig. 4a). Phylogenetic richness increased
in winter (1.11 + 0.11, p < 0.001) but did not change in the
breeding season (0.00 + 0.16, p=0.982; Fig. 5a). Among
grid cell assemblages, patterns of mean phylogenetic richness,
change in phylogenetic richness, and change in phylogenetic
beta diversity are all strikingly similar to corresponding taxo-
nomic metrics (Fig. 4-5).

Functional homogenization
Functional beta diversity decreased from 1980 to 2019
(=0.060 + 0.019, p=0.002) driven by decreasing turnover
(=0.111 # 0.025, p < 0.001) rather than nestedness (-0.010
+ 0.036, p=0.779; Fig. 4a). Functional richness increased
in both the breeding season (0.024 + 0.004, p < 0.001) and
winter (0.030 + 0.003, p < 0.001), even though species rich-
ness only increased in winter (Fig. 5a). For functional richness
to increase without increasing species richness, functionally
unique species must replace functionally redundant species.
Many of the breeding species being lost are small passerine
invertivores (Supporting information), while the species that
are expanding the functional space of breeding assemblages
include raptors, waterfowl, wild turkey Meleagris gallopavo,
common raven Corvus corax and ruby-throated humming-
bird Archilochus colubris (Fig. 6). Most of these species have
also become more common in winter and are expanding
the functional space of winter assemblages as well (Fig. 6).
Functional richness increased in both seasons, but the gap in
functional richness between breeding and winter assemblages
did not change over time, so nestedness did not change.
Decreasing functional turnover indicates that functional
space unique to breeding or winter assemblages (after account-
ing for differences in richness) is decreasing. This can happen
in two ways: 1) contraction of functional space unique to one
season, or 2) expansion of functional space shared by both
seasons. We observe both of these phenomena. Seasonally
unique functional space has contracted for both winter and
the breeding season. For winter assemblages, species such as
evening grosbeak Coccothraustes vespertinus, pine grosbeak
Pinicola enucleator, and purple finch Haemorhous purpureus
filled a region of functional space that was not usually filled
by breeding assemblages, but these species are occurring
less often in this region, so the volume of winter-only func-
tional space has decreased (Fig. 6a, Supporting information).

Similarly, short-billed aerial invertivores such as chimney
swift Chaetura pelagica and common nighthawk Chordeiles
minor filled a region of functional space in breeding assem-
blages that winter assemblages did not fill, but these species
have declined, so the volume of breeding-only functional
space has decreased (Fig. 6b, Supporting information).

Functional turnover has also decreased due to the expan-
sion of shared functional space between seasons. Raprtors
were originally more common in winter assemblages, but
species such as Cooper’s hawk Astur cooperii and red-tailed
hawk Buteo jamaicensis have increased in the breeding sea-
son (Fig. 6, Supporting information), so this region of func-
tional space that was often winter-only is now increasingly
shared by both seasons. In addition, functionally unique
species such as bald eagle Haliacetus leucocephalus, common
merganser Mergus merganser, wild turkey, and common raven
are increasing in both seasons and are expanding functional
space in both seasons. (Fig. 6, Supporting information). As
these species increase shared functional space, the proportion
of unshared functional space has decreased, and functional
turnover has decreased.

In addition to the species described above, hummingbirds
are contributing to changes in functional diversity. Ruby-
throated hummingbird is increasing in the breeding season
and thus increasing the volume of functional space unique to
the breeding season, though this is partially counteracted by
the increase of rufous hummingbird Selasphorus rufus in win-
ter. (Fig. 6b, Supporting information). Hummingbirds are
so functionally distinctive that they play an outsized role in
driving functional diversity patterns. In 2013, rufous hum-
mingbird occurred in every grid cell, resulting in particularly
high winter functional richness and low functional turnover
that year (Fig. 4a—5a, Supporting information). If we remove
rufous hummingbird from the analysis, total functional beta
diversity still decreases (-0.063 + 0.018, p < 0.001), but
functional turnover does not significantly decrease (-0.029 +
0.030, p=0.320), as the rise of ruby-throated hummingbird
in the breeding season counteracted increasing similarity in
other regions of functional space. If we remove both hum-
mingbirds, total functional beta diversity and turnover both
decrease (—0.106 + 0.023, p < 0.001; —0.199 + 0.025, p <
0.001) due to the other functional changes described above.

Discussion

Building on previous research that identified taxonomic
homogenization between winter and breeding bird commu-
nities in the northeastern US (Cutley et al. 2024), we find
that phylogenetic and functional beta diversity have also
decreased over the last four decades. The decreasing seasonal
turnover that we observed for taxonomic, phylogenetic, and
functional diversity indicates that fewer species, evolutionary
lineages, and functional traits are unique to either winter or
breeding assemblages and are instead increasingly shared by
assemblages in both seasons. While phylogenetic homogeni-
zation closely mirrors taxonomic homogenization, functional
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homogenization manifests in distinct ways that are important
to unpack. Loss of specialized functions specific to a season
may have cascading effects on biodiversity, similar to the
consequences of other types of biotic homogenization where
specialists have decreased and generalists have increased
(Davey et al. 2012, van Der Plas et al. 2016), and the loss
of functional diversity could impact ecosystem resilience and
health (Flynn et al. 2009, Matuoka et al. 2020). In order to
understand the effects of functional homogenization, though,
it is important to know which functions are changing.

The contrast between taxonomic and functional diversity
provides insight into how seasonal assemblages are changing.
Although species richness of breeding communities is stable,
the functional richness of these breeding communities is
increasing, as small-bodied invertivores unique to the breed-
ing season are replaced by functionally distinct species which
also occur in winter assemblages, such as bald eagle Haliacerus
leucocephalus, Cooper’s hawk Astur cooperii, common mer-
ganser Mergus merganser, common raven Corvus corax, turkey
vulture Cathartes aura, and wild turkey Meleagris gallopavo.
As taxonomic homogenization increases the proportion of
shared species between seasons, the proportion of functional
space shared between seasons should also increase, but the
relationship between these diversity metrics is not straight-
forward. The assemblages with the steepest declines in taxo-
nomic beta diversity are not the same assemblages with the
steepest declines in functional beta diversity (Fig. 4b). Some
assemblages with increasing taxonomic turnover (less shared
species) have decreasing functional turnover (more shared
functional space), and vice versa. Therefore, changes in func-
tional composition are not merely a side effect of changes
in taxonomic composition (Baiser and Lockwood 2011).
Studies of biotic homogenization across space have also found
different trends for taxonomic and functional beta diver-
sity (Sonnier et al. 2014, White et al. 2018, Tsianou et al.
2021). Though many studies of functional homogenization
find trends of increasing generalists and decreasing special-
ists (McKinney and Lockwood 1999, 2001, Clavel et al.
2011, Davey et al. 2012), we instead find increasing func-
tional richness in both seasons as functionally distinct spe-
cies become more common. Yet this leads to homogenization
because these species are increasingly shared between winter
and the breeding season.

Many of the functionally unique species shared between
seasons have increased thanks to human efforts. Species such
as bald eagle and wild turkey have increased populations as
the result of decades of successful conservation (Watts et al.
2008, Hughes and Lee 2015). Increases in raptors and water-
fowl — including species such as Cooper’s hawk, hooded mer-
ganser Lophodytes cucullatus, and common merganser — also
reflect successful reversals of earlier declines thanks to effec-
tive conservation and management (Rosenberg et al. 2019).
As these species have increased in both seasons, both the
total volume of functional space and the proportion of func-
tional space shared by both seasons has increased, resulting
in higher functional richness in both winter and the breed-
ing season and lower functional turnover between seasons.
Some of the homogenization we observe, therefore, may in

fact be a positive indicator, reflecting the recovery of species
that increasingly occur year-round.

Human actions have also boosted populations of hum-
mingbirds, particularly through the spread of feeders
(Greigetal. 2017, Mechan et al. 2020). Ruby-throated hum-
mingbird Archilochus colubris has become much more com-
mon since the 1980s, though in our study area it only occurs
in the breeding season. As ruby-throated hummingbird
increases the volume of functional space unique to breed-
ing assemblages, it contributes to functional differentiation
— rather than homogenization — between seasons. However,
this differentiation is partially counteracted by rufous hum-
mingbird Selasphorus rufus, a western North American spe-
cies which has been increasingly documented in the eastern
US over the last several decades (Conway and Drennan 1979,
Hill et al. 1998, Mitra and Bochnik 2001). If rufous hum-
mingbird continues to spread in the Northeast, then hum-
mingbirds will occur in both the breeding season and in
winter, representing an important aspect of functional con-
vergence between these two seasons.

Less positive anthropogenic effects, including climate
change, are also likely responsible for functional homogeniza-
tion between seasons. Species, such as turkey vulture and black
vulture Coragyps atratus, have become increasingly common
in the northern US in winter as ranges shift north in response
to climate change (Zimmerman et al. 2019, Marneweck et al.
2023), increasing functional space shared by winter and
breeding season assemblages. At the same time that some spe-
cies are shifting their ranges into our study area, other species
are shifting their ranges out of our study area. The decreasing
occurrences we observed for evening grosbeak Coccothraustes
vespertinus and pine grosbeak Pinicola enucleator are likely
due to poleward shifts in their winter ranges (Widick et al.
2023). Boreal finches occupy functional space unique to
winter, so the loss of these species reduces the seasonal dif-
ferences between bird assemblages. Breeding-only functional
space is also decreasing due to declines in aerial invertivores
such as common nighthawk Chordeiles minor and chimney
swift Chaetura pelagica. Declines of aerial insectivores are well
documented and are likely the result of multiple cascading
impacts, including phenological mismatches of prey, decline
of insect prey due to pesticide use, and habitat loss (Spiller
and Dettmer 2019, Garrett et al. 2022). Therefore, while
functional homogenization is partially driven by the conser-
vation success of resident species such as bald eagle and wild
turkey, functional homogenization is also driven by anthro-
pogenic population declines of seasonal species that represent
seasonally unique functions.

We observe phylogenetic homogenization between sea-
sons, meaning winter and summer communities have
increasingly similar pools of evolutionary history, but this
phylogenetic homogenization appears to merely reflect tax-
onomic homogenization. The same assemblages show the
greatest decreases in both taxonomic and phylogenetic beta
diversity (Fig. 4b), and assemblages that have either increased
or decreased species richness show the same trends for phy-
logenetic richness (Fig. 5b). In other systems, however, phy-
logenetic and taxonomic homogenization are not always so
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tightly linked. Global amphibian assemblages show much
stronger phylogenetic than taxonomic homogenization
when comparing natural and converted habitats, because the
amphibians lost in converted habitats tend to be evolution-
arily unique (Nowakowski et al. 2018), and non-native plant
introductions on oceanic islands have shown much stronger
taxonomic than phylogenetic homogenization because intro-
duced and native species tend to be closely related (Yang et al.
2021). In our study, though, changes in species composition
do not seem to be phylogenetically biased.

Our study is the first to quantify functional and phyloge-
netic homogenization between seasons, illustrating how eval-
uating biotic homogenization across multiple metrics offers
a more comprehensive view of community changes. We find
evidence of homogenization between winter and breeding
bird communities in the northeastern US, and we identify the
functional shifts contributing to functional homogenization.
As the pressures of continued and accelerated global change
continue to drive biotic homogenization worldwide, under-
standing patterns of seasonal homogenization and its drivers
is crucial for future bird conservation, as conservation strate-
gies often target specific periods of the annual cycle, such as
the breeding season or migration. Consequently, traditional
conservation approaches may need re-evaluation, and more
flexible, dynamic management strategies that account for
changing bird populations may be required.
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