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ABSTRACT
Theory suggests life history plays a key role in the ability of organisms to persist under fluctuating environmental conditions. 
However, the notion that environmental variability has shaped the distribution of life history traits across large spatial and 
taxonomic scales has gone largely untested using empirical data. Synthesising a collection of data resources on global climate, 
species traits, and species ranges, we quantified the role that environmental variability over time has played in shaping pace of 
life across the world's non-migratory, non-marine bird species (N = 7477). In support of existing theory, we found that species 
that experience high inter-annual temperature variability tended to have a slower pace of life, while the opposite was true for 
high intra-annual temperature variability. The effect of precipitation variability was less pronounced and more uncertain. These 
observed patterns were apparent despite the vastly different ecologies of our study species and evidence of strong phylogenetic 
constraint. Additionally, we highlight the importance of contextualising rates of environmental change in terms of the historical 
variability of environmental systems and species' pace of life. Species experiencing higher rates of relative environmental change, 
in terms of standard deviations per generation, may be most susceptible to climate change.

1   |   Introduction

Fluctuating environmental conditions pose a challenge for or-
ganisms, which must cope with perennial variation to persist 
(Levins 1968). As such, environmental variability has played a 
pivotal role in shaping ecological systems. It has been proposed 
that variability impacts species plasticity, acclimation capacity 

(Dobzhansky  1950; Shah et  al.  2017), and range limits (Chan 
et al. 2016; Pintor, Schwarzkopf, and Krockenberger 2015), and 
ultimately dictates the conditions under which species are likely 
to persist (Capdevila et al. 2022; Janzen 1967). Environmental 
conditions can vary across a range of time scales, for instance, 
within a given year (i.e., intra-annual variation) as well as across 
years (i.e., inter-annual variation).
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Over time, natural selection is expected to act in such a way 
that maximises long-term growth rates (Cole  1954) and mi-
nimises the risk of extinction (Mountford  1973) for a given 
species. Long-standing theoretical assertions postulate that 
life history strategies play a key role in this optimisation 
and that these strategies should vary according to the degree 
and characteristics of environmental variability experienced 
by a species (Stearns  1976). Life history traits are often col-
lapsed into a continuum referred to as ‘pace of life’ (Ricklefs 
and Wikelski 2002), with slow life histories characterised by 
traits such as high survival, late age of maturity, and low rates 
of reproduction and fast life histories the converse (Healy 
et  al.  2019). For iteroparous species with generation lengths 
of at least 1 year (most vertebrate species (Wingfield  2008)), 
life history theory suggests that species (or populations) with 
a slower pace of life should be buffered from inter-annual en-
vironmental variation. In this scenario reproductive effort can 
be distributed across longer periods of time, integrating envi-
ronmental conditions experienced over an individual's lifes-
pan (Murphy 1968; Schaffer 1974). Simulation-based work has 
come to similar conclusions, that slower pace of life is a type 
of bet-hedging strategy to overcome short-term environmen-
tal variability (Le Coeur et al. 2022; Metcalf and Koons 2007; 
Morris et al. 2008; Paniw, Ozgul, and Salguero-Gómez 2018; 
Schmid et al. 2022); this idea is supported by evidence linking 
dampened population-level fluctuations with slower pace of 
life (Capdevila et al. 2022; Jackson, Le Coeur, and Jones 2022). 
However, the notion that these processes have shaped the dis-
tribution of life history traits across large spatial and taxo-
nomic scales has gone largely untested using empirical data, 
having been explored in only taxonomically limited contexts 
(Nevoux et al. 2010).

In contrast to proposed associations between slower life his-
tories and higher inter-annual variation, empirical evidence 
supports the opposite pattern when considering intra-annual 
variation. High intra-annual environmental variation (gen-
erally associated with greater seasonality) is associated 
with increased clutch sizes (Jetz, Sekercioglu, and Böhning-
Gaese 2008) and lower rates of adult survival (Ricklefs 1997) 
in birds as well as faster metabolic rates (Yanco, Pierce, and 
Wunder 2022). This pattern has been attributed to the bottle-
neck of resources that may occur in environments with high 
variability (e.g., fewer food resources in winter months at high 
latitudes). Given a low probability of surviving to the next 
breeding season due to scarce resources in the non-breeding 
season, individuals should invest resources in raising more 
young (Martin 2004; McNamara et al. 2008).

These two dimensions of environmental variability, inter- and 
intra-annual variation, however, have typically been consid-
ered in isolation regarding their impact on life history traits. 
Many environments exhibit similar variation on both inter- and 
intra-annual scales, while others exhibit very different variation 
across these scales. Understanding the associations between 
environmental variability and life history is also critical if we 
are to predict how species will respond to future changes in the 
environment given recent and potential future changes in both 
inter- (Diffenbaugh et al. 2017; Hansen et al. 2014; van der Wiel 
and Bintanja 2021) and intra-annual environmental variability 
(Donat et al. 2016; Feng, Porporato, and Rodriguez-Iturbe 2013). 

Climate change is likely to impact species in different ways de-
pending on their life history characteristics and the historical 
conditions (i.e., variability) under which they have evolved. 
Other factors, such as a species' dietary niche, may also medi-
ate how organisms experience environmental variability. For 
example, there is an expectation that species that rely on widely 
available and reliable resources will exhibit faster life histories 
(Sibly and Brown 2007).

In this study, we test long-standing theoretical assertions link-
ing environmental variability and life history traits by synthe-
sising a collection of data resources on global climate, species 
traits, and species ranges. We quantified inter- and intra-annual 
variability in both temperature and precipitation and examined 
its effects on generation length, a representative metric of pace of 
life, across the world's non-migratory (i.e., resident) bird species 
(N = 7477). Birds are an ideal taxonomic group for this purpose 
given their large geographic distribution, diversity of life histo-
ries, past avian-focused research in this area, and robust data 
resources. We asked two questions: (1) To what degree are both 
inter- and intra-annual environmental variability associated 
with pace of life as predicted by ecological theory?; (2) How can 
we put the rate of environmental change experienced by species 
into the appropriate context by taking into account both envi-
ronmental variability and species' pace of life? Using a flexible 
hierarchical Bayesian approach, we decouple the role of these 
two dimensions of environmental variability while considering 
shared evolution histories of these birds and relevant ecologi-
cal traits, such as body mass and dietary niche. Our framework 
allowed us to quantify and propagate uncertainty in our data 
throughout the analyses, accommodating the complexities of 
these global data resources. We furthermore derive rates of rel-
ative environmental change for these species, in terms of stan-
dard deviations per generation, which provides the long-term, 
evolutionary context for assessing which species and communi-
ties might be most resilient to environmental change.

2   |   Materials and Methods

2.1   |   Characterising Environmental Variability

We obtained global monthly temperature (2 m height) and pre-
cipitation data spanning 1950–2022 from the ERA5 climate 
reanalysis, provided on a 0.25° × 0.25° grid (Bell et  al.  2021; 
Hersbach et  al.  2020). We considered these metrics as indica-
tors of general environmental variability, given the important 
role they play in structuring ecological communities (Jiang 
et  al.  2017; Letten et  al.  2013; Moore et  al.  2018). We applied 
a square-root transformation for precipitation due to the right 
skew nature of the data. To derive inter-annual variability, we 
first averaged temperature and precipitation across all months, 
for each cell north of 60° S latitude, in each year. While deriving 
season-specific metrics would be valuable, accurate estimates of 
breeding period dates were not available for all species. For each 
cell, we detrended yearly averages using a linear regression to 
prevent bias that directional change might introduce. For tem-
perature, we calculated the standard deviation of the detrended 
time series, resulting in a single estimate of inter-annual tem-
perature variation (� interT) for each cell. Since variation in precip-
itation should be larger in areas with greater mean precipitation, 
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we used the coefficient of variation (standard deviation/mean) 
of the detrended time series rather than the standard deviation 
(� interP). Temperature is ‘interval-scale’ data, where 0 does not 
represent some absolute value, while precipitation is considered 
‘ratio-scale’, where 0 represents an absence of precipitation, 
which is why we use different variability metrics for tempera-
ture and precipitation.

To derive metrics for intra-annual variability, for each cell in 
each year, we calculated the standard deviation for tempera-
ture and the coefficient of variation for precipitation across all 
months, following the method used to derive ‘seasonality’ in 
WorldClim (Fick and Hijmans 2017). We then averaged these 
year-specific standard deviations across all years of our time 
series, resulting in a single estimate of intra-annual tempera-
ture variation (� intraT) and a single estimate of intra-annual 
precipitation variation (� intraP) for each cell. While data used 
to characterise variability are relatively contemporary in na-
ture and processes prior to this study period have undoubtedly 
shaped our study species, there exists a tradeoff between the 
length, the accuracy, and the resolution of the climate record. 
The 73-year time series that we made use of provided us with a 
relatively long-term (multi-generational), accurate, and high-
resolution perspective of environmental variability and how 
conditions have shifted in response to environmental change 
over this period.

2.2   |   Bird Trait Data, Range Data, and Associated 
Environmental Variability

We focused our analyses on all non-migratory bird species 
found in non-marine environments to understand global-
scale patterns of pace of life. We excluded marine birds 
based on taxonomic order (i.e., excluding Sphenisciformes, 
Procellariiformes, Pelecaniformes, Suliformes, 
Phaethontiformes, and Charadriiformes), as marine habi-
tat use is highly conserved across species. While some non-
marine species exist in these orders, these are very few in 
number.

Migratory species were excluded as seasonal migration may, in 
and of itself, be a bet hedging strategy (Somveille, Rodrigues, 
and Manica 2015), in addition to the fact that conditions expe-
rienced in multiple locations (i.e., breeding compared to non-
breeding grounds) may influence life history processes (Cooper 
et  al.  2024). Marine species (i.e., seabirds) were excluded as 
there exists fundamental differences between marine and non-
marine environments that may confound reliable inference 
(Carr et al. 2003). Moreover, conditions in both marine and ter-
restrial environments are likely to have important implications 
for seabird life history. These species nest on land and forag-
ing patterns are influenced by conditions in the terrestrial en-
vironment, however they rely on food resources located in the 
marine environment (Schreiber 2002). As such, the relevant en-
vironmental processes for life history likely differ between non-
marine and marine birds, presenting challenges for inference 
when both groups are included in the same analysis.

We obtained generation length data, defined as the average age 
of parents in any population, for all relevant species, from Bird 

et al. (2020). Generation length is highly correlated with other 
life history metrics and is a key indicator of a species' position 
along the slow-fast pace of life continuum (Gaillard et al. 2005; 
Healy et al. 2019). We obtained species range data from BirdLife 
International (2022), data on body mass and dietary niche from 
AVONET (Tobias et  al.  2022), and phylogenetic information 
from BirdTree (Jetz et al. 2012). Dietary niche was a trait with 
10 categories (predator aquatic, frugivore, granivore, herbivore 
aquatic, herbivore terrestrial, invertivore, nectarivore, omni-
vore, scavenger, and vertivore). Dietary niche data were missing 
for 5 species of tropical owls in the genus Otus—we classified 
these species as ‘vertivore’.

We manually reconciled all taxonomic discrepancies across 
datasets to the BirdLife taxonomy Version 2022.2 (BirdLife 
International and Handbook of the Birds of the World  2022). 
While all datasets used the BirdLife taxonomy, different tax-
onomy versions were used in each dataset. Name mismatches 
were reconciled using the taxonomic status change descrip-
tions across different BirdLife versions. Once complete, all 
data sources were linked to the version of the BirdLife taxon-
omy used by BirdTree using the taxonomy crosswalk provided 
by AVONET, resulting in complete data for all but 5 species in 
the final dataset which were excluded (Lophura hatinhensis, 
Hypositta perdita, Phyllastrephus leucolepis, Anthus longicauda-
tus, Polioptila clementsi). When generation length or trait data 
from Bird et al. (2020) and AVONET for multiple species corre-
sponded to one species in the BirdTree taxonomy, we took the 
average of any continuous variable (e.g., body mass) across spe-
cies and assigned that to the single BirdTree species. All categor-
ical variables (e.g., trophic niche) were consistent across multiple 
species that were assigned to one BirdTree species. If multiple 
range maps corresponded to one species in the taxonomy, we 
joined the ranges. If one range map corresponded to more than 
one species in the taxonomy, we duplicated the range.

For each species, we extracted range-wide mean and standard 
deviations for inter- and intra-annual temperature and precip-
itation (� interT, � interP, � intraT, � intraP), after excluding any extreme 
outliers in that range, defined as values that fell outside of 3 me-
dian absolute deviations from the median (Leys et al. 2013). We 
used the calculated standard deviations to account for the spa-
tial variation in environmental variability across species' ranges 
(Figure S1). In this way, each species had one mean value and 
one standard deviation for each of these metrics. In total our 
dataset represented 7477 species from 29 orders and 198 fami-
lies. We processed data in R 4.3.2 (R Core Team 2023) using the 
‘tidyverse’ 2.0.0 family of packages (Wickham et  al.  2019), as 
well as the ‘sf’ 1.0–15 (Pebesma 2018) and ‘terra’ 1.7–55 packages 
(Hijmans et al. 2021) for spatial data processing.

2.3   |   Pace of Life as a Function of Environmental 
Variability

Using a hierarchical Bayesian approach, we modelled genera-
tion length for each species as a function of environmental vari-
ability. We simultaneously assessed the impact of both inter- and 
intra-annual variation in temperature and precipitation in our 
model. Because body mass is known to be strongly associated 
with generation length and we sought to estimate the effect of 

 14610248, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.70077 by M

ichigan State U
niversity, W

iley O
nline L

ibrary on [25/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 13 Ecology Letters, 2025

environmental variability in the absence of this metric, it was 
also included as a predictor variable in the model. Separate in-
tercepts were estimated for each trophic niche category, to ac-
count for and estimate the effect that this might have on pace 
of life.

We used an observation model to account for uncertainty in 
generation length, our response variable. To calculate the mag-
nitude of uncertainty to be used in our model, we used a simu-
lation approach based on the methods used by Bird et al. (2020) 
to derive estimates of generation length. Bird et al.  (2020) cal-
culated generation length using observed and predicted (i.e., 
imputed) values for age at first breeding, maximum longevity, 
and annual adult survival (Equation  1 from Bird et  al.  2020). 
We used this approach to generate an initial set of generation 
lengths for each species. If the life history parameters are con-
sidered to be measured without error, these represent the ‘true’ 
generation lengths. However, each of these life history param-
eters has some associated uncertainty, given by the associated 
R2 values provided by Bird et  al.  (2020). This is a measure of 
how well predictions matched the observed data. For each 
of 100 different replicates, we drew random values for each 
of these life history parameters, using the provided values in 
Bird et al. (2020) as the mean, and the associated R2 values for 
each parameter to calculate the variance for the gaussian noise 
added to each variable. From R2 = 1 −

residual variance

total variance
, we have 

residual variance =
(

1 − R2
)

× total variance, with the residual 
variance representing the associated error and the total variance 
representing the total variance of the life history variable. We 
calculated generation length using the approach following Bird 
et al. (2020) for each species in each replicate and then compared 
the calculated generation lengths using the ‘true’ parameters to 
generation lengths calculated using the parameters sampled 
with some uncertainty. The median R2 values across the 100 
simulations was 0.87. Using the above formulation to calculate 
the residual variance, our uncertainty (standard deviation) for 
our response variable (represented as �) was calculated to be 
0.14 log generation lengths.

We modelled our observed log generation length (y) for each spe-
cies (i) as normally distributed, with some known uncertainty �,

where z is the latent true state for each species i. To account 
for spatial variability in environmental variables over each 
species range, we included a Berkson error component for our 
covariates. Berkson error models can be used to accommo-
date scenarios where the observed variation is smaller than 
the true variance (Buonaccorsi  2010; Foster, Shimadzu, and 
Darnell 2012) – in our case where we have a single value for 
each environmental variable, for each species, yet this vari-
able varies across each species' range. We modelled w, the 
latent value for a given environmental variable, as normally 
distributed, with mean x, the mean value calculated across 
that species range, and standard deviation �x, the calculated 
standard deviation in that environmental variable across that 
species range,

This introduces uncertainty into the model, according to the 
spatial variation that exists for each species. We use the vari-
able M below to refer to a 7477 (i.e., number of species) by 5 
design matrix containing log body mass, as well as the latent w 
values for each environmental variable (� interT, � interP, � intraT, and 
� intraP) for each species. Variable z was modelled as normally 
distributed.

where � represents the grand intercept, � represents an intercept 
for each niche category ( j), � represents the phylogenetic intercept, 
� is a vector of length 5 representing the effect of the predictor vari-
ables on generation length, and � is the residual error. Parameter 
estimates for a given element of � can be interpreted as ‘the effect 
of a specific covariate, while accounting for the effect of all other 
covariates, diet, and phylogenetic effects’. Variance inflation fac-
tors for predictors were all under 3, suggesting that multicollinear-
ity was not an issue for inference (Zuur, Ieno, and Elphick 2010). 
In other words, any relationship between the predictor variables, 
such as relationships between body size and environmental vari-
ables, did not have a substantial impact on parameters estimated 
in the model.

Parameter � was modelled as normally distributed, with mean 0 
and standard deviation ��,

Parameter � was included to account for the phylogenetic 
non-independence among species, that is, the degree to which 
shared ancestry might account for similarities in generation 
length across species. The BirdTree phylogeny was rescaled 
using the Pagel's (1999) lambda transformation using the ‘gei-
ger’ 2.0.11 (Pennell et al. 2014) and ‘phytools’ 2.1–1 packages 
(Revell  2012), before deriving a correlation matrix based on 
the branch lengths of the scaled tree. Transformations such 
as these provide flexibility in modelling phylogenetic relation-
ships beyond assuming a Brownian motion model of evolution 
(Harmon 2019). Parameter � was modelled as a zero-centred 
multivariate normal,

where P is a correlation matrix derived from the scaled phyloge-
netic correlation matrix and �phylo is a parameter that scales the 
magnitude of the phylogenetic intercepts.

A Bayesian approach afforded us the flexible framework to fit 
this model and provided a means to accurately assess the un-
certainty in our parameter estimates. We fit this model with R 
package ‘cmdstanr’ 0.6.1 (Gabry, Češnovar, and Johnson 2023) 
to interface with Stan 2.33.1 (Carpenter et al. 2017) in R 4.3.2 
(R Core Team  2023). We used R package ‘MCMCvis’ 0.16.3 
(Youngflesh 2018) to summarise, visualise and manipulate all 
Bayesian model output. We ran four chains for 4000 iterations, 
with a warm-up of 2000 iterations for each model. All parameters 
had R-hat values ≤ 1.01 and number of effective samples > 400. 
No divergent transitions were present (Carpenter et  al.  2017). 
Weakly informative priors were provided for all parameters. 

(1)yi ∼ N
(

zi, �
)

,

(2)wi ∼ N
(

xi, �xi
)

.

(3)zi ∼ N
(

� + � j + �i +Mi�, �
)

,

(4)� j ∼ N
(

0, ��

)

.

(5)�i ∼MVN
(

0,P�phylo
)

,
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Graphical posterior predictive checks indicated that the data 
simulated from the posterior predictive distribution were sim-
ilar to the observed data (Figure S2).

For all model results, we present the posterior mean estimates 
in addition to the 89% credible intervals (McElreath  2018). 
This choice of interval is arbitrary but quantifies uncertainty 
while avoiding any suggestion that Bayesian intervals are 
analogous to tests of significance or that this represents some 
threshold for an effect. Instead, we seek to quantify the effect 
size. To present the degree of evidence for the parameter es-
timates, we report the probability that a given parameter is 
positive as p > 0. This was calculated as the proportion of the 
posterior that was > 0. p > 0 values close to 1 or 0 represent 
strong support for a given parameter estimate, while p > 0 
values close to 0.5 denote a positive value being as likely as a 
negative value.

2.4   |   Rates of Relative Environmental Change

For each bird species, we calculated a metric of relative environ-
mental change over our study period, scaled by both the inter-
annual environmental variation and the generation length of 
the species. This metric is similar to the haldane used in evolu-
tionary biology, which characterises rates of phenotypic change 
in terms of standard deviations per generation (Hendry and 
Kinnison 1999). We took the median estimated change in tem-
perature and precipitation as a function of time (i.e., step one in 
the detrending procedure; �) over the range of each species and 
scaled these by � interT and � interP × �P, where �P is the mean pre-
cipitation for that cell (used to convert � interP, which represents 
the coefficient of variation, to the standard deviation), for tem-
perature and precipitation, respectively, as well as generation 
length.

We use inter-, rather than intra-annual, variability as this re-
flects variation over time for any given portion of a species full 
annual cycle. For instance, for a species that breeds in a temper-
ate environment, � interT is an indicator of how much temperature 
varies from one breeding season to the next. This is important 
given that species may have different physiological requirements 
across different portions of the full annual cycle. Our metrics of 
relative change are defined as,

where i represents species, and G represents generation length. 
Parameter � represents the rate of temperature and precipita-
tion change in terms of standard deviations per generation for 
a given species. The scaling of � (typically presented in terms 
of units per decade) allows us to interpret the rate of environ-
mental change in the context of both baseline environmental 
conditions and species pace of life. Positive values indicate a 
species has experienced an increase in temperature or pre-
cipitation over time, while negative values indicate a species 

has experienced a decrease in temperature or precipitation 
over time.

3   |   Results

3.1   |   Environmental Variability, Species Traits, 
and Pace of Life

Inter- and intra-annual variability in both temperature and 
precipitation differed across the globe (Figure 1). As expected, 
in many areas (particularly when considering temperature in 
high latitude regions) variation was larger within than among 
years (median � interT and � intraT equal to 0.38 and 1.19, respec-
tively; median � interP and � intraP equal to 0.15 and 0.52, respec-
tively). Generation length varied across species, with a median 
of 3.0 years (inter-quartile range = 2.5–3.8 years; Figure  2). 
Double-barred finch (Taeniopygia bichenovii) had the short-
est generation length at 1.4 years, while sulphur-crested cock-
atoo (Cacatua galerita) had the longest generation length at 
27.2 years.

There was a positive estimated relationship between inter-
annual variation in temperature and generation length. For 
each 1 standard deviation (across species) increase in inter-
annual temperature variation (� interT), generation length in-
creased by 0.52% (89% CI (0.011, 0.94), P(> 0) = 0.98) – this 
corresponds to a 3.88% difference in generation length across 
the range of inter-annual temperature variability experienced 
by these species (Equation 3). The same relationship was seen 
for inter-annual precipitation, though the estimated effect 
of precipitation was somewhat uncertain. For each 1 stan-
dard deviation increase in inter-annual precipitation (� interP), 
generation length increased by 0.32% (89% CI [−0.038, 0.68], 
p[> 0] = 0.92) – this corresponds to a 6.44% difference across 
the span of inter-annual precipitation (Figure  3). The effect 
of variability on generation length is multiplicative as the 
response variable is logged (i.e., percent change per SD is re-
flected by 

(

e�×sd(� inter) − 1
)

× 100).

We found the opposite pattern for intra-annual variation in 
temperature. For each 1 standard deviation (across species) in-
crease in intra-annual temperature (� intraT), generation length 
decreased by 2.21% (89% CI [−2.69, −1.73], p[> 0] = 0) – this 
corresponds to a 16.38% difference across the span of intra-
annual temperature experienced by species. Essentially no ef-
fect of intra-annual variation in precipitation was found. For 
each 1 standard deviation increase in intra-annual precipitation 
(� intraP), generation length decreased by 0.04% (89% CI [−0.44, 
0.37], p[> 0] = 0.56) (Figure 3).

Body mass was strongly associated with generation length. For 
each 1 standard deviation increase in log(body mass), genera-
tion length increased by 40.8% (89% CI [39.6, 42.1], p[> 0] = 1). 
Trophic niche was also associated with generation length 
(Figure 4). The largest difference in generation length between 
any two trophic niche categories was 18.56% (89% CI [10.85, 
26.34], p[> 0] = 1), between Herbivore Aquatic and Aquatic 
Predator (Figure S3; Equation 4). Strong phylogenetic signal ap-
peared to be present for generation length across species (Pagel's 

(6)

�Ti

� interTi

× Gi = �Ti

�Pi

� interPi × �P

× Gi = �Pi

,
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Lambda = 0.96, where 0 represents no phylogenetic signal and 1 
is maximal signal).

3.2   |   Rates of Environmental Change Relative to 
Inter-Annual Variability and Generation Length

Across species, temperatures increased at a rate of 0.14 tem-
perature standard deviations per generation (median �T, inter-
quartile range = 0.10–0.21) from 1950 to 2022 (Equation  6). 
Approximately 76% of species experienced rates of temperature 

change > 0.1 |
|

�T
|

|

, while 12% of species experienced rates of change 
> 0.3 |

|

�T
|

|

 (Figure 5a). Thresholds of 0.1 and 0.3 are derived from 
maximal rates of estimated evolutionary change from Bürger 
and Lynch (1995) and Gingerich (2009). Precipitation was found 
to be increasing at a rate of 0.04 precipitation standard deviations 
per generation (median �P, inter-quartile range = 0.01–0.08) over 
this period. Approximately 17% of species experienced rates of 
precipitation change > 0.1 |

|

�P
|

|

, while 1% of species experienced 
rates of change > 0.3 |

|

�P
|

|

 (Figure 5b). Parameters �T and �P were 
positively correlated (ρ = 0.47). Change experienced per gener-
ation (�) was positively correlated with generation length (G; 

FIGURE 1    |    Long-term data provide an opportunity to characterise global patterns of temporal environmental variation. (a) For a given area, en-
vironmental variation over time can be decomposed into inter-annual (across years, � inter) and intra-annual (within years, � intra) components for both 
(b) temperature and (c) precipitation. (b) Red hues represent high inter-annual and low intra-annual variation, yellow hues represent low inter-annual 
and high intra-annual variation, and orange hues represent both high inter-annual and high intra-annual variation. (c) Pink hues represent high 
inter-annual and low intra-annual variation, blue hues represent low inter-annual and high intra-annual variation, and purple hues represent both 
high inter-annual and high intra-annual variation. (d) Variation in temperature over time for two focal species: Yellow-crowned amazon (Amazona 
ochrocephala) exhibiting a slow pace of life (i.e., long generation length), low intra-annual and high inter-annual variation; Madagascar scops owl 
(Otus rutilus) exhibiting a fast pace of life, high intra-annual and low inter-annual variation. The magnitude of inter-annual variation is generally 
smaller than intra-annual variation across the globe. (e) Distribution of A. ochrocephala. (f) Distribution of O. rutilus.
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ρT = 0.69, ρP = 0.47) and with relative rates of environmental 
change (�

�
; �T = 0.64, �P = 0.82).

4   |   Discussion

Integrating a collection of global data resources, we demon-
strate a link between both inter- and intra-annual environ-
mental variation and the life history of 7477 species of birds 
from around the world, representing nearly the entirety of the 
world's non-marine, non-migratory bird species. In support 
of long-standing theory, higher inter-annual variability in 
temperature was associated with a slower pace of life. Higher 
intra-annual (generally associated with seasonal) tempera-
ture variability, however, was associated with a faster pace of 
life. Associations between precipitation variability and pace 
of life were more uncertain. While data complexities present 
a significant challenge for global analyses such as this, we 
accommodated this structure, including uncertainty in both 
response and predictor variables using a flexible hierarchical 
Bayesian framework. Adapting an approach from evolution-
ary biology, we derived rates of environmental change relative 
to both the environmental variability experienced by species 
as well as their pace of life. Results demonstrate the rapid 

nature of these changes from an evolutionary perspective and 
illustrate how species are differentially experiencing environ-
mental change due to differences in life history and environ-
mental variability.

4.1   |   Bet Hedging in the Face of Inter-Annual 
Variation

Our global analysis provides empirical support for the theoret-
ical assertion that a slower pace of life can act as a mechanism 
to buffer organisms from inter-annual variability (Capdevila 
et  al.  2022; Jackson, Le Coeur, and Jones  2022) – an idea for 
which there stands a substantial body of theory dating back 
to the 1960s (Le Coeur et  al.  2022; Metcalf and Koons  2007; 
Murphy  1968; Stearns  1976). A slower pace of life, character-
ised by longer generation lengths, will result in reproductive 
effort spread across more years (Stearns 1976). For ‘slow’ spe-
cies, 1 year with poor environmental conditions for reproduction 
will tend to have a relatively small impact on an individual's 
lifetime reproductive output as well as the total number of in-
dividuals in the population (Morris et al. 2008). This is due to 
the tendency for adult survival to vary less from year to year 
in response to fluctuating environmental conditions and for 

FIGURE 2    |    Pace of life varies across the avian tree of life. The phylogeny shows 198 families of non-migratory birds corresponding to 29 orders, 
representing 7477 species. Mean generation length per family is given by the height of the bars while the number of species in each family is indicated 
by the colour ramp. Pointers show the two focal species from Figure 1 (Amazona ochrocephala and Otus rutilus) representing contrasting patterns of 
environmental variation and pace of life, as well as the species with the longest (sulphur-crested cockatoo Cacatua galerita) and shortest generation 
lengths (double-barred finch Taeniopygia bichenovii) on record.
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population growth rates to be relatively insensitive to changes 
in reproductive output (i.e., fecundity) for species with a slow 
pace of life (Gaillard and Yoccoz 2003; Sæther and Bakke 2000). 
For species that exhibit a slow pace of life, individuals may skip 
breeding entirely in years with poor environmental conditions 
(Martin and Mouton 2020; Talis et al. 2022). Slow pace of life 
can be thought of as a ‘risk averse’ or ‘bet hedging’ strategy, 
similar to buffering strategies seen in other ecological contexts 
(Zohner et al. 2017). Species with alternating boom-bust dynam-
ics that are likely to result from fast pace of life in highly variable 
environments (Jackson, Le Coeur, and Jones 2022; Rademaker, 
Van Leeuwen, and Smallegange 2024) would, on average, be ex-
pected to exhibit a higher overall probability of local extinction 
over the long-term (Murphy 1968). Over time, this is likely the 
mechanism by which slow pace of life has come to be associated 
with higher inter-annual variability (Figure 3).

4.2   |   Faster Pace of Life With Higher Intra-Annual 
Variation

In contrast to inter-annual variation, higher intra-annual vari-
ation in temperature was associated with a faster pace of life. 
Intra-annual variation is indicative of the differences that a spe-
cies experiences over the full annual cycle (Marra et al. 2015), 
over which species may have different energetic requirements 
and exhibit different behaviours. Our findings are in agree-
ment with previous studies showing that higher seasonality 
is associated with traits typically linked to a faster pace of life 
(Jetz, Sekercioglu, and Böhning-Gaese  2008; Yanco, Pierce, 
and Wunder 2022). Past work has placed a particular focus on 
observed differences in bird clutch sizes between the Nearctic 
(characterised by high intra-annual environmental variability 
and large clutch sizes) and Neotropics (characterised by low 
intra-annual environmental variability and small clutch sizes) 
(Lack 1947; Martin 1995; Skutch 1949). Observed patterns have 
been proposed to result from lower adult survival in the more 
seasonally variable Nearctic, where inhospitable conditions 
during the non-breeding season, including cold temperatures 

and limited food resources, may create a demographic bottle-
neck (Martin 2004; Martin et al. 2000; Ricklefs 1997). This pat-
tern holds in our results. It should also be noted, however, that 
despite our interpretation of intra-annual variation in environ-
mental conditions as tightly linked with seasonality, variation 
within a given year that might not necessarily be considered 
seasonality (i.e., what might be thought of as stochastic, unpre-
dictable variation within a year) will also contribute to these 
measures.

4.3   |   An Integrated Approach to Understanding 
Life History

Because of the contrasting effects of inter- and intra-annual 
variability (Figure  3) and variation in each of these metrics 
across the globe (Figure  1), it is critical to assess their effects 
on life history simultaneously, a key contribution of our study 

FIGURE 3    |    Both inter- and intra-annual temperature variability are associated with pace of life across the world's birds. (a) Parameter estimates 
can be interpreted as the percent change in generation length per one standard deviation change in the associated predictor (� interT, � intraT, � interP, and 
� intraP). Points represent posterior medians while lines represent 89% credible intervals. (b) Partial residual plots for � interT and (c) � intraT, showing their 
relationship with generation length given other variables included in the model (Equation 3). The red lines represent the effect size of that element of 
environmental variation while each point represents one species. One outlier not visible for the purposes of visualisation.
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(Figure S4). The effect of intra-annual variation in temperature 
on pace of life was larger than that of inter-annual variation in 
temperature. Some support exists for the effect of inter-annual 
precipitation, though some uncertainty exists. That variability 
in temperature showed a more pronounced effect than variabil-
ity in precipitation highlights the complex effects of precipita-
tion that might vary across ecological systems (Liu et al. 2020) 
(Figure 3). Ultimately, these metrics are proxies for conditions 
that are likely to impact demographic rates, such as resource 
availability. Other elements of environmental variation, such 
as temporal autocorrelation in conditions (i.e., the propensity 
for a consecutive string of favourable years), may play a role 
in shaping life history as well (Bitter et al. 2021; Marshall and 
Burgess 2015; Metcalf and Koons 2007). However, in our data-
set, measures of temporal autocorrelation were positively cor-
related with our measures of variability, preventing us from 
parsing the effect of one from the other.

While the effect size of environmental variability on pace of life 
is relatively small, these observed patterns were apparent de-
spite the vastly different ecologies of our study species, which 
spanned 29 taxonomic orders. Given the pronounced phyloge-
netic signal present for generation length, it is likely that there 
are some limitations (McKitrick 1993) on the degree to which 
generation length can change over evolutionary time scales 
(i.e., there exists some phylogenetic constraint). A number of 
other factors, including predation (Taylor and Gabriel  1992) 
and competition (Wright et  al.  2019) might also play a role in 
shaping pace of life. However, a recent synthesis suggests that 

evidence for the role of predation and competition is limited (at 
least on relatively short time scales) (Grainger and Levine 2022). 
Other mechanisms besides pace of life may also help organ-
isms cope with variable conditions, including the use of co-
operative breeding strategies (Rubenstein and Lovette  2007), 
developmental and behavioural plasticity (Bauer, McNamara, 
and Barta 2020), metapopulation dynamics (Hanski 1998), and 
seasonal migration (Somveille, Rodrigues, and Manica  2015). 
These mechanisms may explain why, despite the general trends 
we observe here, we see a range of pace of life strategies in 
many environments. It should also be noted that intra-annual 
variability varies across a latitudinal gradient. A number of eco-
logical variables have been found to vary across latitude, includ-
ing species richness (Hillebrand  2004), body size both within 
(Youngflesh et  al.  2022) and among species (Meiri, Yom-Tov, 
and Geffen 2007), and range size (Stevens 1989), with varying 
explanations as to their cause, including temperature, produc-
tivity, and competition. The degree to which these processes, 
that might covary with environmental variability or mediate its 
impact, deserves more attention in future work.

We found that pace of life was associated with both body size, 
which is known to have a strong association with life history, as 
well as dietary niche. Life history, especially reproduction, has 
long been thought to depend on food availability (Lack 1947), 
though this has been the subject of some dispute in the liter-
ature (Jetz, Sekercioglu, and Böhning-Gaese 2008; Owens and 
Bennett  1995). Prior work in mammals has suggested that 
more offspring (a trait associated with a faster pace of life) are 

FIGURE 5    |    Environmental change over the last 73 years is relatively rapid considering the variability of these systems and species generation 
lengths. Histograms show the rates of (a) temperature change (�T; Equation 6) and (b) precipitation change (�P; Equation 6) experienced by the world's 
non-migratory bird species. Dark grey and black bars represent those species where the rate of experienced change (either positive or negative) is > 0.1 
and 0.3 standard deviations per generation, respectively. (c) Median �T and (d) �P across all species in each cell across the world. Cells with fewer than 
10 species are shown in grey.
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generally produced by species with more reliable food resources 
(Sibly and Brown 2007). Our results support this notion, with 
those species that rely on vegetation and seeds (likely a more 
consistent resource from year to year) to generally have a faster 
pace of life, and species that consume other terrestrial animals 
to exhibit a slower pace of life (Sibly et al. 2012; Figure 4). In this 
way, dietary niche represents an additional dimension of how 
organisms experience environmental variability.

4.4   |   Putting Rates of Environmental Change Into 
the Appropriate Contexts

In assessing how species are experiencing ongoing environmen-
tal change, it is critical that we consider both the historical con-
ditions experienced by those species as well as their pace of life, 
which necessarily impact how they experience their environ-
ment. Species that experience a wider range of environmental 
conditions (i.e., variation around some mean) are more likely to 
be tolerant of a wider range of conditions. This idea has been 
formalised in the context of thermal tolerances, in the form of 
the climate variability hypothesis (Gaston  2003; Janzen  1967; 
Stevens 1989), where broader thermal tolerances are expected in 
more variable climates. This principle can be extended to con-
sider any dimension of environmental variability. Simply put, 
if a species cannot cope with existing environmental variabil-
ity, it will cease to persist in that environment. In the context of 
global change, organisms in more variable environments would 
be expected to experience a lower effective degree of change 
compared to organisms in a more constant environment, given 
the same degree of change (i.e., directional change in that mean) 
over time (Deutsch et al. 2008; Jenouvrier et al. 2022).

Pace of life must also be considered, however, when putting 
rates of environmental change into context. While organisms 
with a slower pace of life (i.e., longer generation lengths) are ex-
pected to be more robust to environmental variability (Le Coeur 
et al. 2022; Metcalf and Koons 2007; Stearns 1976), these species 
will tend to adapt to directional change in those conditions at a 
slower rate (Lande 1982; Schmid et al. 2022). Fewer generations 
over a given period means fewer opportunities for selection to 
operate and thus slower evolutionary adaptation. As such, spe-
cies experiencing higher rates of environmental change per gen-
eration may likely be those that suffer the greatest consequences.

In scaling rates of environmental change by both the variability 
of a given system and a species' pace of life, we can build a more 
accurate picture of how species are experiencing this change. 
We found relatively rapid rates of change for temperature and 
precipitation from 1950 to 2022 for a large fraction of the bird 
species considered (Figure 5). More than 75% of species expe-
rienced rates of temperature change > 0.1 standard deviations 
per generation (�; Equation 6), while more than 10% experienced 
rates > 0.3 standard deviations per generation. For context, 0.1 
standard deviations per generation was previously estimated 
to be the maximum rate of sustained evolutionary change for 
a phenotypic trait (Bürger and Lynch 1995), though rates of up 
to 0.3 standard deviations have been observed (Gingerich 2009). 
While species' capacities to adjust to environmental change 
might not map to rates of phenotypic change 1:1, these hypoth-
esised limits provide a useful benchmark for interpreting how 

rapidly the environment is changing. Species are also adapting to 
climate change in ways other than phenotypic change, including 
shifts in species' ranges (Chen et al. 2011; Rushing et al. 2020) 
and phenology (Parmesan and Yohe  2003), however, research 
suggests these responses are also not keeping pace with climate 
change and exhibit considerable complexities (Liang et al. 2018; 
Youngflesh et al. 2021, 2022, 2023). We suggest that while rates 
of environmental change are typically reported in units such as 
degrees per decade, the magnitude of these changes should be 
put into the appropriate context if we hope to determine which 
species or systems are likely to be most susceptible to climate 
change.

5   |   Conclusions

Despite the many factors and constraints on species' life his-
tory, our results illustrate how environmental variability has 
played a key role in shaping pace of life across the world's 
non-marine, non-migratory birds. Importantly, environmen-
tal variability is multi-dimensional. The scale at which this 
variability occurs influences how species experience and in-
teract with their environment. While we focus on variation 
across and within years, variability across other time scales, 
particularly for species with generation lengths of < 1 year 
(e.g., many invertebrates), also likely play a relevant role. 
Ultimately, these findings contribute to our understanding 
of the macroecological and eco-evolutionary processes that 
shape these communities and support long-standing theoret-
ical predictions for the relationship between environmental 
variation and life history.

These theoretical and empirical efforts represent a critical com-
ponent in elucidating the impacts of global change, particularly 
given potential future increases in environmental variation 
(Donat et  al.  2016; Hansen et  al.  2014), and the projected in-
creased frequency of extreme events (Diffenbaugh et al. 2017). 
These changes may themselves be driving shifts in species life 
histories over time (Ozgul et al. 2023), and rates of environmen-
tal change must be interpreted in light of both the degree of his-
torical variability and species pace of life. Such an integrated 
perspective is needed if we are to effectively target conservation 
efforts to species and systems of greatest concern.
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able from Bird et  al.  (2020) (DOI: https://​doi.​org/​10.​1111/​cobi.​13486​), 
bird trait data are available from Tobias et al.  (2022) (DOI: https://​doi.​
org/​10.​1111/​ele.​13898​), and bird phylogeny data are available from Jetz 
et al. (2012) (DOI: https://​doi.​org/​10.​1038/​natur​e11631).
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