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Abstract

As data and computing power have surged in recent decades, statistical modeling
has become an important tool for understanding ecological patterns and
processes. Statistical modeling in ecology faces two major challenges. First,
ecological data may not conform to traditional methods, and second,
professional ecologists often do not receive extensive statistical training. In
response to these challenges, the journal Ecology has published many
innovative statistical ecology papers that introduced novel modeling methods and
provided accessible guides to statistical best practices. In this paper, we reflect on
Ecology’s history and its role in the emergence of the subdiscipline of statistical
ecology, which we define as the study of ecological systems using mathematical
equations, probability, and empirical data. We showcase 36 influential statistical
ecology papers that have been published in Ecology over the last century and, in
so doing, comment on the evolution of the field. As data and computing power
continue to increase, we anticipate continued growth in statistical ecology to
tackle complex analyses and an expanding role for Ecology to publish innovative
and influential papers, advancing the discipline and guiding practicing ecologists.
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ECOLOGY: AN IMPORTANT VENUE
FOR STATISTICAL ECOLOGY

Ecology is a generalist journal. It publishes papers on
diverse taxa across many biomes, addressing a wide
variety of ecological questions. Papers focused on the
development of ecological research methods have been
central to Ecology’s niche, dating back to the journal’s
inception. For example, in its third year, Ecology
published a critique of the Arrhenius formula, which
models species-area  relationships, focusing on

experimental design considerations that explained why
the formula failed to fit empirical data (Gleason, 1922).
Of the methods papers appearing in Ecology, a notable
subgenre is statistical ecology, particularly in recent
decades. Our goal in this article is to highlight influen-
tial statistical ecology papers that have appeared in
Ecology and, in so doing, trace the development of
important concepts and methods in the analysis of eco-
logical data. The 36 papers that we showcase appear in
a collection of Ecology articles, highlighting a century of
statistical innovations.
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WHAT IS STATISTICAL ECOLOGY?

Statistical ecology is the study of ecological systems using
mathematical equations, probability, and empirical data.
Statistical ecology is closely related to the discipline of
theoretical (or mathematical) ecology. Two hallmarks
of statistical ecology set it apart from theoretical ecology.
First, statistical ecology holds a data-first perspective.
Analysis and interpretation of data—whether empirical
or simulated—is at the forefront of statistical ecology
research. This contrasts with theoretical modeling efforts
in which the focus is to explore behaviors of complex
systems, with application to data being of secondary
importance. The second hallmark of statistical ecology is
uncertainty. Statistical ecology is concerned with estimating
or predicting some ecological quantity, as well as the
uncertainty associated with that estimate or prediction.
This contrasts with theoretical approaches, which often
provide deterministic outputs of mathematical formulas
where quantifying uncertainty is not a central focus
(although stochastic mathematical models are an exception).
All told, it is difficult to draw strict lines between subdis-
ciplines, and thus there is ambiguity in the definition.
However, for the purposes of this retrospective, we define
statistical ecology as the empirical effort to explain or
predict ecological phenomena using mathematical equations
with associated measures of probabilistic uncertainty.

IDENTIFYING INNOVATIVE
PAPERS ON STATISTICAL ECOLOGY

We performed a literature review to identify innovative
statistical ecology papers that have appeared in Ecology
throughout its 100-year history. On 15 February 2023,
we downloaded the full records of papers published in
Ecology from its inception to the February 2023 issue
(n =17,589) from Web of Science. We then screened
titles and abstracts (or first pages when abstracts were
not present) of all papers (removing nonresearch items
such as errata, editorials, and book reviews) and classified
whether or not each paper focused on statistical ecology.
We used the data-first and uncertainty criteria to distin-
guish statistical ecology papers from theoretical and
mathematical papers. We considered a “focus on statistical
ecology” as a paper that described a novel modeling frame-
work, extended previously described models, or provided
synthesis or guidance on applying statistical methods;
simply applying an established statistical method did not
qualify. We identified 1447 statistical ecology papers,
representing 8.8% of research papers published in Ecology
in its first 103 years (Gilbert, 2024). Unsurprisingly, the
proportion of statistical ecology papers in Ecology each

year has increased through time (Figure 1). Fast upward
growth of statistical ecology papers began around 1970,
coinciding with advances in computing technology; the
proportion peaked in the early 2000s and dropped after
2010, likely due to the growth of methods-focused journals
such as Methods in Ecology and Evolution.

We used the number of citations to help identify
innovative papers, reasoning that influential papers
get more citations (Teplitskiy et al., 2022), though we
acknowledge this approach may create gender bias in
the selected papers due to gender homophily in citation
behavior (Zhou et al., 2024). We retained statistical
ecology papers that had at least as many citations as
the 75th percentile of citations of all research articles in
Ecology for that year, leaving us with 424 articles. This rep-
resents 29.3% of all statistical ecology papers (n = 1447)
and 9.3% of all research articles above the 75th percentile
of citations (n = 4550), indicating that papers focused on
statistical ecology are slightly overrepresented in Ecology’s
highly cited papers relative to their baseline prevalence.
We subsequently read each paper to classify it into seven
(nonmutually exclusive) themes (Figure 2): (1) models for
individuals (12.0% of the 424 highly cited statistical
ecology papers), (2) population models (37.3%), (3) methods
for communities (30.5%), (4) methods for ecosystems (6.1%),
(5) spatial methods (19.9%), (6) model selection and
evaluation (5.2%), and (7) tools and best practices
(17.0%). Note that the reported percentages do not sum
to 100 since a paper could be classified into multiple
categories.

We selected 36 papers to highlight in this collection,
choosing to showcase several papers among the highest
citation rank per category (Figure 3). We focused on
papers that we believe have impacted the direction of
statistical ecology as well as ecology more broadly. Since
our objective is to relay a story of how statistical ecology
has grown over the decades—rather than giving an
overview of cutting-edge statistical methods—some of
the work described herein no longer represents best
practice in data analysis. Finally, we acknowledge that
the authorship of these highly cited papers (particularly
from the earlier years) reflect the exclusionary history of
ecology and hope that, moving forward, statistical ecology
will see increasing participation by more diverse ecologists
(Beck et al., 2014; Gilbert, 2018; Martin, 2012; Whelan &
Schimel, 2019).

THEME 1: MODELS FOR
INDIVIDUALS (FIVE PAPERS)

Statistical ecology papers within this category seek to
understand the movements and behaviors of individual
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FIGURE 1 Time series of proportion of papers published in Ecology with a focus on statistical ecology from 1920 to 2022, the lifetime of

the journal. Thick red line: 10-year moving average.

animals. With the advent of radio telemetry in the
late 1950s and 1960s and the subsequent explosion of
wildlife tracking efforts (Benson, 2010), researchers needed
corresponding statistical methods to make sense of such
data. Analysis objectives with tracking data include the
estimation of home ranges, understanding habitat selection,
and characterizing movement patterns. Methodological
development in these areas remains very active, particularly
given the blossoming of “high-throughput” movement
data (Nathan et al., 2022) and miniaturization of track-
ing devices enabling application to taxa as small as
insects (Knight et al., 2019).

Estimating home ranges of animals from location
data at first seems trivial (just plot points on a map) but
comes with many statistical challenges. Worton (1989)
introduced a method for kernel smoothing of animal
locations to characterize home ranges. This nonpara-
metric method was an improvement over parametric
methods because it accommodated multimodal distributions
(i.e., noncircular home ranges). The paper also provided
a cross-validation approach for selecting an appropriate
smoothing parameter. Ensuing years saw continued advances
in home range modeling, including Fleming et al.
(2015), who presented a method for estimating animals’
home ranges by viewing autocorrelation in location data
as information to be used, rather than a nuisance parameter.
Traditional kernel density methods—as in Worton (1989)—

assume independence of such data and as a result dra-
matically underestimate home range sizes and perform
poorly when confronted with new data.

Evaluating resource selection is a major focus of stud-
ies that use data from individual animals. Johnson
(1980) introduced a method for characterizing usage and
availability (e.g., of foods or habitats) by ranking. This
approach was innovative because it provided consistent
estimates of preference and avoidance even when chang-
ing the “components” (foods, habitat types) included in
the analysis and because it translated to existing methods
of statistical hypothesis testing. In addition, the paper’s
discussion outlined the hierarchical nature of habitat
selection (from a species’ geographic range to the selection
of food resources within an individual’s home range), a
framework that is now ubiquitous in animal ecology and
has established the paper as a citation classic.
Northrup et al. (2013) provided practical guidance for
defining available locations when performing resource
selection analyses. Using simulations, they demon-
strated that spatial mismatch in availability
(i.e., drawing random “available” locations from a spa-
tial extent different from what the animal can access/
use) leads to biased estimates of resource preference.
Spatial autocorrelation in environmental variables exac-
erbated this problem. Because defining resource avail-
ability is crucial—but largely arbitrary—for such
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FIGURE 2 Prevalence of each theme by time period within sample of 424 highly cited statistical ecology papers reviewed in detail.

analyses, this paper is a valuable read for anyone
performing resource selection studies.

Finally, movement ecology has emerged as a
subdiscipline of ecology, unified by the view that char-
acterizing an individual’s movement can lend insight
into physiological, behavioral, and population questions
(Converse et al., 2022; Patterson et al., 2008). State-space
models have been an important tool in this arena, as they
attempt to distinguish ecological reality (an animal’s
movement) from the data collection or observation process.
Jonsen et al. (2005) demonstrated how state-space model-
ing could be applied to location data to make inferences
on animal movement as well as behavioral states. Important
features of their model include (1) its ability to accommodate
complex error structure (e.g., data from irregular time
intervals) and (2) model-based filtering of extreme (erroneous)
locations, removing the need for ad hoc filtering of
location data. They applied their model to tracking data

for seals in the North Atlantic, distinguishing between
migrating and foraging behaviors.

THEME 2: MODELS FOR
POPULATIONS (SIX PAPERS)

Central goals for population modeling include estimating
species distributions, population abundance (or density),
demographic parameters (e.g., survival), and population
trends over time. Population modeling attracted consider-
able attention prior to and concurrent with the inception
of Ecology with the work of scientists such as Malthus,
Lotka, and Volterra. However, we believe that this work—
and many population studies that appeared in Ecology in
subsequent decades (e.g., De Bach & Smith, 1941)—are
better classified as theoretical or mathematical modeling.
Nevertheless, statistical models of populations saw many
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advances in the first several decades of Ecology’s existence.
For example, Cottam et al. (1953) evaluated methods for
assessing whether spatial patterns of plants are random or
nonrandom, an important consideration when estimating
population density. They found that accurate estimates
could be made with multiple sampling methods (quadrats,
distances between individuals), assuming that a suitable
number of individuals was sampled. Perhaps the most
notable aspect of the paper is the authors’ use of a
computer-simulated population of individuals, a con-
siderable effort for the early 1950s. Indispensable for
understanding and validating methods, data simula-
tion remains a core component of statistical ecology
today (DiRenzo et al., 2023). Unlike methods for
plants, estimating population parameters for animals faces
challenges of animal movement and imperfect detection.
Capture-recapture modeling, broadly considered the gold
standard of estimating population abundance as well as vari-
ous demographic parameters for animals, has roots coincid-
ing with Ecology’s beginning and has experienced extensive
development over the last century (Seber & Schofield, 2019).
For example, Burnham and Overton (1979) described an
important advance in capture-recapture modeling by
developing a method that accommodated variation in
detectability among individual animals. Such detection
heterogeneity causes systematic negative bias in esti-
mates of abundance (Kéry & Royle, 2015); thus, this
method bolsters abundance estimates in light of

Timeline of 36 statistical ecology papers highlighted, classified into seven themes.

among-individual variation in “catchability,” for example,
due to idiosyncrasies among animals.

Since populations are collections of individuals, it is
conceptually desirable to link models for individuals
and their movements to population parameters. Gardner
et al. (2022) accomplished this with an integrated animal
movement and spatial capture-recapture model. The
successors to capture-recapture, spatial capture-recapture
models (Borchers & Efford, 2008; Royle & Young, 2008),
estimate individual animals’ activity centers from spatial
patterns of repeated detections of individuals across traps
and thus provide a powerful way to estimate population
density and other demographic parameters. However,
spatial capture-recapture treats animal movement and
space use in a simplistic (and often unrealistic) fashion
(Theng et al., 2022). Gardner et al. (2022) rectified this by
injecting spatial capture-recapture with animal movement
models (e.g., correlated random walks); their simulations
demonstrated that animal movement parameters could be
estimated with spatial capture-recapture data alone but
that auxiliary telemetry data improved estimation of these
parameters. The approach of Gardner et al. (2022) is a
framework for linking animal movement to population
dynamics and offers opportunities for further development
(e.g., application to open populations, alternative movement
models).

Not all populations can be directly captured or
otherwise marked, so MacKenzie et al. (2002) made a
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valuable contribution by developing the occupancy
model for “unmarked” animal populations. Borrowing
ideas from the realm of capture-recapture, occupancy
models recognize that the detection of individuals is
imperfect, so such models rely on the detection histories of
species across multiple sites (rather than detection histories
of individuals within a site) to estimate detection probability
and thereby provide more accurate estimates of species
occurrence patterns and distributions. The original
occupancy model has been adapted in a myriad of ways.
Among papers published in Ecology alone, extensions
include multiseason occupancy models to estimate site
colonization and extinction rates (MacKenzie et al., 2003),
false-positive models to account for species misidentifica-
tions (Chambert et al., 2015; Clare et al., 2021; Royle &
Link, 2006), and models to estimate abundance from
detection-nondetection data (Royle & Nichols, 2003).
Understanding population trends through time has
long been a primary focus of population modeling efforts
in mathematical ecology. Clark and Bjernstad (2004)
gave a perspective from statistical ecology by modeling
population time series with state-space models. Like the
state-space modeling approach for individual movement
described by Jonsen et al. (2005), these models distinguish
between an ecological process (population size) and an
observation process (how those populations are surveyed).
Moreover, state-space modeling of populations directly
accommodates the temporal dependence between popu-
lation sizes in adjacent time steps. While modeling tools
for population time series are valuable in and of them-
selves, these state-space models are a key component of
integrated population models, which have become impor-
tant tools for estimating population sizes and demographic
parameters (Saunders et al., 2019; Schaub & Kéry, 2021).
Finally, a common goal of population modeling is to
estimate relationships between species’ occurrence data
and environmental patterns (e.g., climate, land cover,
terrain); these correlations allow for projections of
species range maps. Many seemingly disparate methods
(e.g., occupancy models, random forests, maximum
entropy) fall within this broad category of species
distribution modeling. Araujo and Peterson (2012)
provided a perspective on the assumptions and approaches
of species distribution modeling, focusing on broad-scale
efforts to map species distributions based on associa-
tions with climate variables. For example, they discuss
the equilibrium assumption of species distribution models,
which implies that species can be found in all locations
with habitable climate conditions. This assumption
simplifies the reality that species’ distributions are also
shaped by biotic interactions and dispersal, meaning
that climate-only models may overestimate the distri-
butions of species. Beyond assumptions, the authors

discuss applications of species distribution modeling,
including identification of suitable sites for trans-
locations and assessing impacts of climate change on
species’ distributions.

THEME 3: MODELS FOR
COMMUNITIES (EIGHT PAPERS)

Communities are ecology’s core. Many influential papers
describing the statistical analysis of communities have
been published in Ecology. These fall into three broad
categories: models focused on quantifying biodiversity,
models to relate species composition to environmental
patterns, and models to estimate the niche overlap of
species.

Biodiversity’s fundamental measure is species richness.
However, species richness is difficult to observe, and thus
many methods to estimate the number of species present
in a given area have been suggested. Heck et al. (1975)
offered a development in rarefaction, a method developed
in the late 1960s to estimate species richness by fitting a
curve to the number of detected species plotted against
sample size. Heck et al. (1975) provided formulas to
calculate the expected number of species as well as
the variance in species richness and demonstrated
how optimal sampling effort can be allocated based on
applying the formulas to an initial exhaustive survey.
Chao and Jost (2012) provided an important advance
in estimating species richness based on sample coverage
rather than sample size. Coverage—or “complete-
ness”’—is the proportion of the number of individuals in
a community that pertain to species detected in the
sample and, counterintuitively, can be estimated from
data. This method is particularly relevant for applica-
tions that compare communities of differing diversity
(e.g., temperate versus tropical communities). Approaches
based on sample size give biased estimates of species
richness in such cases because a given sized sample
may fully characterize the low-diversity community
but fail to comprehensively represent the high-diversity
community.

Species richness is just one of many biodiversity
variables that can be used to characterize communities.
Functional diversity, or the diversity of trait combina-
tions in a community, can be useful for understanding
many ecological phenomena. Villéger et al. (2008)
proposed three metrics to quantify functional diversity:
functional richness, evenness, and divergence. Shortly
after, Laliberté and Legendre (2010) proposed a new
functional diversity metric (functional dispersion) to
add to the three metrics proposed by Villéger et al.
(2008). The authors also developed a way of
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accommodating qualitative traits and missing trait
values when calculating functional diversity metrics.
Finally, the paper described the FD R package, which
provided a user-friendly means of calculating func-
tional diversity metrics and vastly expanded the
method’s scope of application.

Community data collected over multiple locations
represent high-dimensional data that may be difficult
to interpret. Such data contain information on many
species, and there exist many possible environmental
variables (e.g., climate, land cover, pH) to relate to patterns
of species composition. Ordination methods—which
summarize the similarity and dissimilarity of multivari-
ate ecological data—are as old as Ecology but saw many
exciting developments in a community ecology context
starting in the 1950s (ter Braak, 1995). ter Braak (1986)
introduced canonical correspondence analysis, a massively
influential ordination technique in community ecology.
Briefly, this method combines an existing ordination
method (correspondence analysis) with regression: An
ordination of community abundance data is constrained
by (related to) environmental variables, allowing associa-
tions between community composition and the environment
to be robustly visualized and interpreted (Palmer, 1993).
Anderson and Willis (2003) described another ordination
advance that they called canonical analysis of principal
components. Like canonical correspondence analysis,
canonical analysis of principal components is a constrained
ordination method—which use a priori hypotheses
to structure the output of ordination—in contrast to
unconstrained ordinations (e.g., principal component
analysis or nonmetric multidimensional scaling), which
do not account for grouping patterns within data when
reducing dimensionality. The key innovation provided by
Anderson and Willis (2003) is that their method can use
any distance or dissimilarity measure (e.g., Euclidean
distance, Bray-Curtis dissimilarity), providing greater
flexibility and expanding interpretation opportunities,
since different dissimilarity or distance metrics emphasize
different aspects of multivariate data.

Additionally, community analyses may have the goal
of understanding how species interact by measuring their
co-occurrence or niche overlap. Dice (1945) described
a method to quantify how likely species are to co-occur.
In addition to describing an index that quantifies
co-occurrence, the author described how to evaluate the
co-occurrence of two species with a chi-squared test and
discussed aspects of experimental design that affect the
validity and interpretation of the index. Beyond its original
use, the index (known as the Serensen-Dice coefficient)
is widely used to quantify the similarity between two
samples or communities (e.g., beta diversity), and for
this reason, Dice (1945) has the distinction of being

Ecology’s most highly cited paper of all time. Similar in
objectives, Pielou (1972) described a method to quan-
tify niche width and niche overlap based on occurrence
data of multiple species across multiple habitats. The moti-
vating data set was aphid species occupying different gold-
enrod (Solidago) species (which represented the “habitats”),
but the method is generalizable to any instance in which
occurrence data for multiple species are collected across
multiple replicates of multiple habitats. Finally, similar
in philosophy to the previous two papers, Swanson
et al. (2015) described a modern method of niche over-
lap estimation based on stable isotope ratios. This
method extended existing isotopic methods beyond two
dimensions (i.e., more than two isotopes), more fully
approximating the concept of the niche as an
“n-dimensional hypervolume” and calculated the probabil-
ity (with uncertainty) that an individual of one species is
found within the niche of another species.

THEME 4: MODELS FOR
ECOSYSTEMS (TWO PAPERS)

Ecosystem ecology presents challenges for statistical
analysis: Many factors—biotic and abiotic—affect pro-
cesses of interest, often at multiple spatiotemporal scales
and over spatial extents that are difficult (or impossible) to
manipulate experimentally (but see Carpenter et al., 2001;
Likens, 1985). Thus, ecosystem ecologists often rely on
process-based or simulation models, defined as models
that describe interactions between at least two ecosystem
components (Geary et al., 2020; Krinner et al., 2005).
While such models often incorporate empirical data to
fit or constrain parameters, mathematical models and simu-
lated ecological processes (e.g., predator-prey interactions
via Lotka-Volterra equations) constitute the heart of these
ecosystem models (Geary et al., 2020). Ecosystem ecologists
have also developed and refined statistical models that
are suited for the types of observational data collected in
ecosystem settings.

Ecosystems are disproportionately impacted by rare—
but extreme—disturbances such as floods, megafires, and
heatwaves as compared to disturbances of lesser magnitude
(Gaines & Denny, 1993). These rare events are challenging
to model with traditional statistical machinery, which
treats such events as more unusual than they are, hampering
inference and prediction. Katz et al. (2005) described a
solution: application of extreme value modeling in ecosys-
tem ecology. In addition to parameters for the location
(akin to the mean of the normal distribution) and scale
(variation) of a distribution, the generalized extreme value
distribution has a shape parameter that controls the tail of
the distribution and accommodates distributions with
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“heavy” tails (implying that extreme values are less unex-
pected than a traditional distribution with a “light” tail).
The authors modeled a 500-year time series of sediment
yield from the high Arctic and showed that an extreme
value distribution better fit the data as compared to
traditional methods.

Understanding nutrient flows is a major goal in
ecosystem ecology, and researchers commonly measure
and analyze nutrient ratios such as nitrogen-phosphorus
ratios in lakes. Isles (2020) gave practical advice on
analyzing and interpreting such ratios. Untransformed
ratios have statistical properties that produce pitfalls
when analyzed—even with basic summary metrics such
as averages. Such pitfalls are prevalent in the literature:
Isles (2020) sampled 100 ecological stoichiometry papers
and found analysis errors in 93%. The author demon-
strated that simply log-transforming ratio data prior to
analysis prevents these pitfalls and ensures more robust
ecological interpretation of results.

THEME 5: MODELS FOR SPACE
(FOUR PAPERS)

Ecology is inherently spatial, creating challenges as well
as opportunities for analyses. Issues such as scale and
spatial autocorrelation can challenge traditional analyses,
but on the other hand, scaling of ecological phenomena
is an important avenue of research, and inclusion of
autocorrelation can improve predictive mapping and
prevent overly precise estimates of uncertainty. Throughout
its history, Ecology has published many influential papers
focused on spatial modeling.

The locations of organisms in space are perhaps one of
the most fundamental forms of biodiversity data; appropri-
ate analyses of such data can address many ecological ques-
tions. Clark and Evans (1954) presented a method to
analyze the spacing of individuals in a population.
Their method was based on distance-to-nearest-neighbor
data to determine whether individuals showed an aggre-
gated, random, or uniform distribution and included a sig-
nificance test accompanying these classifications.
Because their method used distance-to-nearest-neighbor
data, it was not sensitive to the effects of quadrat size,
which had plagued earlier analyses. Clark and Evans
(1954) applied their method to several plant data sets
and reported aggregated distributions of prairie forbs and
a more uniform than expected distribution of forest trees.

Spatial autocorrelation is prevalent in ecological data.
Legendre (1993) gave an in-depth overview of spatial
autocorrelation and how to accommodate it in ecological
analyses. The paper showed that failing to account
for spatial autocorrelation can lead to overestimating

the influence of explanatory variables. The author
demonstrated how autocorrelation could be described
(e.g., variograms) and discussed appropriate statistical
tests for autocorrelated data. Finally, the paper described
model-based ways of accommodating spatial structure,
focusing on two approaches: first, modeling spatial
autocorrelation by including polynomials of the geographic
coordinates of sampled locations, and second, via a
geographic distance matrix among the sampled locations.

Expanding on the issue of autocorrelation, Hefley
et al. (2017) provided a detailed explanation of account-
ing for autocorrelation (either spatial or temporal) in
ecological models via basis functions, which are func-
tions that transform a covariate. The polynomial
approach described by Legendre (1993) is an example of
a basis function; in the quadratic regression
¥ =PBx° + B;x! + B,x, the predictor variable x (a vector)
is raised to the 0 power (the coefficient , being the inter-
cept), and then the first power (B, being the linear effect),
and then the second power (B, being the quadratic
effect). However, many other possible basis functions can
be used (e.g., transformations based on the difference
between each observation of the predictor variable and
specified “knots,” or anchor points along the x-axis),
which means that many seemingly different spatial
methods share the same basis function framework. Via
empirical examples (quail population trends, spatial dis-
tribution of a forb), Hefley et al. (2017) showed how var-
ious basis-function approaches could provide similar
results and improved inference relative to models that
do not account for autocorrelated data.

Finally, conservation planning often has a spatial
focus as connectivity between habitat patches is impor-
tant for promoting persistence of species and associated
ecosystem functions. Network theory provides important
tools for quantifying and visualizing landscape connectivity.
Rayfield et al. (2011) reviewed network methods for
quantifying landscape connectivity and developed a frame-
work for classifying network measures based on measures’
connectivity property (e.g., area of connected habitats,
redundancy of routes between habitats) and structural
level (e.g., network-level vs. component-level). This frame-
work is helpful for finding similarities among the many
existing network measures and identifying categories with
limited analysis options.

THEME 6: MODEL VALIDATION
AND SELECTION (FOUR PAPERS)

Fitting a statistical model is just one step in an analysis.
Model validation—or evaluating whether the model
makes reasonable predictions—is recommended for
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certain types of analysis. For cases when multiple compet-
ing models are evaluated, some method of model selection
is important for interpreting results. Model selection and
validation are active areas of research in the statistical liter-
ature, and Ecology has published many papers on the topic.

The use of null models for model validation was
pioneered by Connor and Simberloff (1979), who argued
that species co-occurrence patterns previously hypothe-
sized to be the result of competition (Diamond, 1975)
could be due to random chance, as demonstrated by a
null model of random species distributions. The debate
that followed profoundly influenced how ecologists
approach model design and hypothesis testing. Advancing
this legacy of null modeling, Gotelli (2000) evaluated nine
null model algorithms to determine whether observed
species co-occurrence patterns (across sites or islands)
statistically differed from randomly generated co-occurrence
matrices. The author identified three of these algorithms as
robust to falsely identifying co-occurrence patterns. These
three algorithms preserved each species’ occurrence fre-
quency (i.e., the proportion of sites/islands in which it was
recorded) when generating random co-occurrence matrices.
The author noted that no single approach is a “silver bullet”
and encouraged practitioners to compare their empirical
data to multiple null modeling approaches.

Ecologists often have many possible explanatory
variables to use in analyses; therefore, some method of
selecting which variables to use is often needed.
Blanchet et al. (2008) introduced a method of forward
selection of explanatory variables, an algorithm to deter-
mine which predictors are meaningfully associated with
a response variable. Their approach was to first evaluate
a global model with all predictor variables. They
recommended proceeding with forward selection only if
the global model is significant, that is, if it fits the data
better than a model without predictor variables. If the
global model is indeed significant, forward selection
(i.e., building up models with more variables) is to be
performed until an added variable brings either the
model’s significance value or adjusted R*> to a
predetermined threshold. Blanchet et al.’s approach
represented a considerable improvement over traditional
forward selection, which is plagued with false positives
(uninformative variables being considered important)
and overestimation of the amount of variance explained.
Forward selection is one of several so-called stepwise
selection techniques, which have received criticism over
the years (Whittingham et al., 2006). Among the alter-
native model-selection approaches,
information-theoretic approaches such as AIC are per-
haps the most popular (Burnham & Anderson, 2002).

When evaluating multiple competing models, averaging
predictions across models is an attractive means of

simplifying interpretation (Dormann et al, 2018). Cade
(2015) critiqued the common practice of averaging regres-
sion coefficients across models, weighted by each
model’s AIC weight. While averaging predictions from
multiple models is acceptable, Cade (2015) showed that
model averaging of regression coefficients was generally
not valid. Because predictor variables from observa-
tional studies are typically collinear, the scales of their
coefficient estimates vary among models with different
sets of predictors. This makes averaging coefficients
across models a dangerous practice, particularly since
model averaging might lend a false sense of security to
practitioners that the model adequately accommodates
uncertainty in covariate effects when in fact collinearity pre-
vents reasonable interpretations. With the rigorous
denouncement of model averaging (“The simple averaging
of regression coefficients ... should be discontinued imme-
diately”’) and hundreds of citations in less than a decade,
Cade (2015) has had a profound influence on the practice
of multimodel inference in ecology.

Asindicated by the previously mentioned papers, model
selection and validation is not always straightforward.
Tredennick et al. (2021) made the fundamental point that
the proper model selection approach depends upon the pur-
pose of the analysis. The authors differentiated exploration,
inference, and prediction as the three primary purposes of a
statistical analysis. Each effort comes with its own potential
pitfalls and key statistical tools. For example, the authors
noted that prediction-focused analyses might fail to validate
predictive accuracy and recommended AIC and
cross-validation as key statistical tools for such efforts.
Careful reading of Tredennick et al. (2021) would benefit any
researcher in the design stages of an ecological study.

THEME 7: TOOLS AND BEST
PRACTICES (SEVEN PAPERS)

Many of the most influential statistical ecology papers
published in Ecology provide syntheses about general
statistical tools or best practices that transcend subdisci-
plines. Such papers are invaluable resources for the
ecological community. Quantitative training for ecolo-
gists is often limited or outdated (Barraquand et al., 2014;
Ellison & Dennis, 2010), and so practicing ecologists may
not be aware of improper statistical habits or of new sta-
tistical tools that are appropriate for their data.

Real ecological data often do not neatly conform to
the cookbook statistical analyses taught in biostatistics
courses. Warton and Hui (2011) provided a guide for
navigating one such scenario: proportional data. Historically,
the arcsine transformation, followed by linear modeling,
was commonly used for proportional data, but Warton
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and Hui (2011) argued that the transformation muddles
interpretability and produces biologically impossible
predictions (e.g., negative proportions). For cases where
proportions are of the form “x out of n” (e.g., 12 out of
50 animals were infected), logistic regression is an
accessible and robust alternative. For cases where
proportions are not binomial (e.g., “75% of the leaf was
damaged”), other forms of generalized linear (optionally
mixed) models such as beta regression are appropriate.
The article by Warton and Hui (2011) exemplifies a paper
that identifies a problematic statistical practice and
outlines accessible and appropriate alternatives.

Meta-analysis is a powerful way of synthesizing
across studies but comes with statistical challenges.
Hedges et al. (1999) described an effective
meta-analysis method for ecological experiments: the
response ratio, which is the ratio of the mean outcome for
an experimental group to that of the control. The response
ratio is especially appealing because it quantifies the pro-
portionate change of experimental manipulations,
allowing results to be compared across studies in which
the response magnitudes vary dramatically. As
described in our discussion of Isles (2020) in Theme 4:
Models for ecosystems, ratios have statistical properties
that produce analytic pitfalls. Recognizing this, Hedges
et al. (1999) anchored their method on the analysis of
the log of the response ratio. Their approach represented
an important advance because it quantified uncertainty and
provided confidence intervals for the summary of effects
across multiple experiments.

In contrast to meta-analysis, which seeks to synthesize
results that were produced across separate studies, data
integration synthesizes across multiple data sets within
individual models (Zipkin et al., 2019). Pacifici et al.
(2017) described a framework for integrating multiple types
of data in species distribution models. This practice of
data integration—or bringing disparate data sets into a
cohesive model—has grown in recent years and has sev-
eral attractive attributes, including expanding the spatio-
temporal scope of inference and increasing the precision
of inference by nature of the larger volume of data
applied to the problem. Pacifici et al. (2017) provided a
helpful overview of integrated species distribution modeling
and described several alternative integrated models to ana-
lyze data from the North American Breeding Bird Survey
and eBird, two public-science programs with structured and
semistructured data collection protocols, respectively.

Machine-learning methods have become important
in ecology as the discipline has become increasingly
data-intensive in recent decades. De’ath and Fabricius
(2000) reviewed classification and regression trees, power-
ful and flexible methods to analyze complex ecological data.
Some of the advantages of these methods include their

ability to handle many different types of response variables
(e.g., numeric and categorical), as well as missing values
in response and explanatory variables. The basic premise
of trees is to split the response data into similar groups
based on explanatory variables, while keeping the tree
reasonably small (i.e., not splitting the data into too
many groups). Cutler et al. (2007) provided an ecologist’s
introduction to random forests, an advance over earlier
machine-learning tools like classification trees. Random
forests create many classification trees and subsequently
combine predictions from the trees, resulting in high
classification accuracy. In addition, random forests provide
a measure of variable importance, allowing users to inter-
pret which variables are most influential in differentiating
groups. Random forests and other machine-learning
methods have the advantage of being able to accommo-
date many predictor variables regardless of collinearity or
the presence of complex interactions (thorns in the side
of traditional regression-based approaches); they have the
limitation of being primarily predictive tools rather than
providing traditional statistical inference (e.g., determining
whether a predictor variable has a statistically significant
relationship with a response).

Even with the rise of machine learning, the varied
goals of statistical analysis (Tredennick et al., 2021)
imply that traditional statistical methods will continue
to occupy a dominant role in the analysis of ecological
data. Graham (2003) described solutions to a ubiqui-
tous challenge for traditional regression: collinearity.
The author first demonstrated via simulations that even
modest collinearity produces significant issues with analy-
sis, including inaccurate parameterization of models and
failure to identify important explanatory variables. As men-
tioned in our discussion of Cade (2015) in Theme 6: Model
validation and selection, collinearity also hamstrings efforts to
average or otherwise interpret regression coefficients across
candidate models. The paper then outlined approaches
(beyond the default of dropping collinear variables) for facing
collinearity, including residual and sequential regression,
principal component analysis, and structural equation model-
ing. Given collinearity’s prevalence in ecological data and the
importance of multiple regression in ecological analyses, ecol-
ogists should be aware of collinearity and that no perfect solu-
tion to it exists. Finally, Murtaugh (2007) advocated for
simplicity and interpretability in ecological analyses when
possible. The author provided several empirical examples of
relatively complex analyses (nested analysis of variance,
linear mixed-effect modeling) that produced results similar to
those of much simpler alternatives and argued that the
more complex analyses were thus not strictly necessary
and indeed might hamper interpretability. This is an
important message for ecologists to hear, particularly
given the runaway growth of computing power and the
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constellation of statistical packages available with
which to analyze data.

DATA AND COMPUTING SHAPE
STATISTICAL ECOLOGY

By definition, statistical ecology is a data-forward approach
to understanding ecological issues. Thus, it is worth
reflecting on how data have shaped the history of statis-
tical ecology (Ellison & Dennis, 2010). In its early years,
ecology was a largely descriptive science; many early
papers in Ecology gave detailed descriptions and species
lists of vegetation and animal communities (e.g., Adams
et al., 1920; Rigg, 1922). This period of the early 20th
century also saw the appearance and widespread uptake
of standard frequentist statistical methods such as the
t-test and analysis of variance, or ANOVA. These
methods became analytic workhorses for ecological
studies, as reflected in features of study design prevalent
in subsequent decades (and to this day) such as quadrats,
randomization, and experimental manipulations. However,
such approaches to data collection cannot inform all of
ecology’s questions, particularly those focused on broader
spatiotemporal scales (e.g., ecosystem ecology, biogeography).
A data revolution in ecology was launched in the latter
decades of the 20th century with the expansion of remote
sensing data (Turner et al., 2003), animal tracking technol-
ogy (Kays et al., 2015), automated camera and acoustic
monitoring (Burton et al., 2015; Shonfield & Bayne, 2017),
and public-science data (Dickinson et al., 2010).

Together with this data revolution, growth in
computing power has played a key role in the expansion of
statistical ecology in recent decades. After all, more data are
of little help in addressing ecological questions if computa-
tional infrastructure is not available to store, manage, and
analyze them. Improvements in computing technology in
the 1970s and 1980s are reflected in the increased preva-
lence of statistical ecology papers in this period (Figure 1).
By the turn of the 21st century, statistical tools that either did
not exist or were infeasible to implement just a generation or
two previously were being routinely used by practicing ecol-
ogists. As a telling example, logistic regression—today a
ubiquitous method in ecology—was referred to as
“nontraditional” by Trexler and Travis (1993). How will this
trajectory continue?

THE FUTURE OF STATISTICAL
ECOLOGY

We envision that the volume and resolution of ecological
data will continue to grow and that improvements in

metadata structures will allow data streams to be increas-
ingly open and accessible. GPS tags will become smaller
and cheaper and have longer lifespans; eDNA monitoring
will expand and be collated into centralized biodiversity
databases (Berry et al., 2021); and public-science projects
like eBird (Sullivan et al., 2009) will increase in volume,
accumulating vast spatiotemporal records. Given this
future, we anticipate that machine-learning and artificial
intelligence methods will become integral parts of the
data collection process, for example, through automated
classification of photo and audio data (Kahl et al., 2021;
Tabak et al., 2019). We see a particular need for bridges
between data sets produced by automated algorithms and
the statistical models with which these data sets are
analyzed. Rhinehart et al. (2022) exemplify this future by
describing an occupancy modeling approach that uses
continuous-score classifications produced by machine-
learning algorithms from acoustic data sets, rather than
the binary detection/nondetection data collected by
human observers in traditional occupancy studies. Rather
than replacing traditional statistical tools, we envision that
machine learning will complement and expand the
existing canon of statistical ecology tools. Finally, we
hope that the community of statistical ecologists will
become more diverse; historically, participation in ecology
(such as Ecological Society of America membership) has
not reflected gender and racial composition of the broader
population (Beck et al., 2014), and we support practices that
promote recruitment and retention of historically excluded
groups in statistical ecology (Duc Bo Massey et al., 2021).
Whether a data set is small or large, whether collected
automatically or by pencil on datasheets, we see an ongo-
ing need for synthesis and practical guidance on many of
the statistical choices facing ecologists. More data are
not always better; some ecological questions are best
addressed with small, hard-won data sets collected by
human hands and eyes (Todman et al., 2023). As advised
by Murtaugh (2007), simplicity is a virtue in statistical
analysis. The breadth of statistical ecology research
published by Ecology over its 100-year lifetime has pushed
forward the scope and depth of ecological questions that
can be asked and answered, exemplifying the very history
of the field itself. There is no doubt that Ecology will
continue to produce innovative papers that will help new
generations in the practice of statistical ecology.
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