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The United Nations recently agreed to major expansions of global protected areas
(PAs) to slow biodiversity declines'. However, although reserves often reduce habitat
loss, their efficacy at preserving animal diversity and their influence on biodiversity in
surrounding unprotected areas remain unclear®>. Unregulated hunting can empty
PAs of large animals®, illegal tree felling can degrade habitat quality’, and parks can
simply displace disturbances such as logging and hunting to unprotected areas of the
landscape® (a phenomenon called leakage). Alternatively, well-functioning PAs could
enhance animal diversity within reserves as well asin nearby unprotected sites’ (an
effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia
contribute to vertebrate conservationinside and outside their boundaries. Reserves
increased all facets of bird diversity. Large reserves were also associated with
substantially enhanced mammal diversity in the adjacent unprotected landscape.
Rather than PAs generating leakage that deteriorated ecological conditions
elsewhere, our results are consistent with PAs inducing spillover that benefits
biodiversity in surrounding areas. These findings support the United Nations goal of
achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with
higher vertebrate diversity both inside their boundaries and in the broader landscape.

The establishment of PAs such as national parks and nature reserves
is afoundational strategy to slow and reverse the global loss of bio-
diversity*’—one of humanity’s greatest challenges. The recent Con-
ference of Parties to the Convention on Biological Diversity (CBD)
in Montreal, Canada, committed nations to protecting 30% of their
lands and seas by 2030 (the ‘30 x 30 goal’). But to justify this goal,
we need to know that PAs are actually effective at enhancing arange
of metrics of biodiversity. Indeed, the conservation outcomes of PAs
are highly variable*”'°"', Many lack the resources for effective manage-
ment®? and are considered ‘paper parks’ (Fig. 1), and whereas others
may be successful at maintaining habitat cover>”*** and even allevi-
ating poverty of nearby communities”, their efficacy at protecting
vulnerable elements of biodiversity—such as wildlife—remains
uncertain®**167,

Prior studies have assessed the efficacy of PAs at enhancing a variety
of conservation metrics, often with mixed results. Forexample, PAsin
forested areas tend to experience lower habitat conversion pressures
than matched unprotected sites®, and have been reported to contain
higher levels of biodiversity>'*®*°, But in much of the world, PAs were
established in relatively remote areas®® because these locations had
low societal opportunity costs (that s, agriculture, logging and other
commercial land uses would have been difficult there). Therefore, any
differences in biodiversity levels observed in PAs'**** orin landscapes
witha high proportion of protected area’ could simply be owing to PAs
having been established ininaccessible areas where forest disturbance
and extractive pressures were low owing to logistical constraints rather
thanowingto the protection statusitself. In other words, any effects of
PAs onbiodiversity are statistically confounded with site accessibility
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SR: The sum of unique species observed, regardless of their ecological function or taxonomy.
FR: Variety in phenotypic traits ((for example, diet and body size) that affect species’ ecological roles.
PD: Evolutionary breadth of the community. Phylogenetic diversity increases when many unique families are represented.
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Fig.1| The effectiveness of PAs depends onsafeguarding multiple facets
ofbiodiversity. a, PAs such as national parks can reduce habitat loss and
degradation (fromlogging) and extractive behaviours such as hunting
(showninred circle), but there are awide range of real-world outcomes based
onmanagement effectiveness. b, PAs are aimed at safeguarding multiple facets
ofbiodiversity, including species richness (SR), functional richness (FR) and

senev?

and habitat conditions, both of which directly influence biodiversity
and could also have affected the locations of PAs. Such confounding has
extremely importantimplications for the United Nations (UN) 30 x 30
goal. IfPAs have enhanced biodiversity simply because they tend to be
located in remote areas with undisturbed habitat, it would mean that
proposed expansions of PA networks would be unlikely to lead to the
desired biodiversity outcomes. New parks are increasingly being des-
ignated in disturbed and degraded areas” because there are ever fewer
tracts of undisturbed, unprotected habitat remaining in most parts of
the world. Insum then, to justify costly??? expansions of the global PA
estate weneed to ascertain whether protectionstatusitself contributes
to positive biodiversity outcomes; we can do this by accounting for
(thatis, de-confounding) potentially biased PA placement, particularly
with regards to habitat quality and accessibility.

Assessing the efficacy of PAs while accounting for their potentially
biased placement can be done using structural causal modelling?***
to remove the confounding effects of site accessibility and habitat
quality, along with statistical matching based on propensity scores®
to ensure balanced covariate values between sampling sites within
versus outside PAs. Such de-confounding has been hindered by alack
of high-resolution, regional-scale metrics of accessibility and forest
structure. Thus, although many studies have used statistical match-
ing based on environmental factors such as elevation and topogra-
phy™®, none have been able to explicitly account for forest structure
and accessibility.

New data now enable us to measure habitat quality much more
effectively than before. Habitat quality has often been measured with
optical (passive) remote sensing products such as satellite imagery for
monitoring changes in forest cover®. However, emerging research has

808 | Nature | Vol 620 | 24 August 2023

h\' ' l/,’

n i

(a variety of predator sizes) and low PD (all small felids)

low PD (all species in the same family)

phylogenetic diversity (PD). PAs often focus on vertebrate conservation, owing
totheir threat levels and value to humans, including for tourism. Our study
focuses on wildlife in Southeast Asia, withmammals shown here representing a
variation of feeding guilds and sizes. The same approachis repeated for birds.

¢, Wildlife communitiesinside PAs and in the surrounding landscape may
exhibitdistinctlevels and types of diversity.

highlighted theimportance of three-dimensional (3D) habitat structure
(forexample, vertical complexity, leaf density profiles or forest height)
as a stronger and more nuanced determinant of animal occurrence,
composition and diversity than forest cover?” %, Although changes
inforest cover can be detected precisely and with high spatial resolu-
tion?, they may not be asuitable proxy for forest vertical structure®*
and may therefore provide relatively little information about the state
of non-tree biodiversity*’. Measurements from lidar, an active remote
sensing technology, offer great promise for monitoring 3D habitat
structure and biodiversity?®*, The recent NASA Global Ecosystem
Dynamics Investigation (GEDI) lidar mission® provides pantropical
3D canopy structure information®?*, but these data have not yet been
leveraged for large-scale biodiversity conservation assessments.
Recent advancesin modelling enable us to measure site accessibility
inrealisticways and with high resolution. For example, asimple meas-
ure of accessibility—the distance from any given location on the land-
scapetothe nearest road or village—was shown tobe astrong predictor
of vertebrate abundance across the tropics®. This has been expanded
to incorporate differences in travel speed on different types of roads
and through different off-road areas as a function of topography and
land cover®, Circuit theoretical movement models now enable the
high-resolution mapping of accessibility as a function of the location
and size of human population centres, the transportinfrastructure net-
works connecting them, and movement speeds through different types
of terrain®3¢, Such accessibility metrics are distinct from other metrics
of anthropogenicinfluence such as the ‘human footprint’™™ (Methods);
for example, many areas without agriculture or infrastructure (those
that would have alow human footprint score) still have roads leading
through them and thus are accessible to hunting, logging and other
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Fig.2|Site accessibility across Southeast Asia. The accessibility of locations
(forexample, to hunters) is estimated from circuit theoretic movement models.
Thisis overlaid onthe map withbird (triangle) and mammal (circle) sampling
locations. Designated terrestrial PAs within the study region areshownin
green. A, current flow inamperesin circuit theoretic movement model.

extractive activities®. (In our study, accessibility is only very weakly
correlated with human footprint (Methods)). Indeed, such extraction
is critical to consider in assessing PA effectiveness. Evenif PAs protect
against habitat loss’, this might not translate into positive outcomes for
wildlife. Vast regions of the world have structurally intact habitats but
are nearly or completely devoid of large animals owing to unsustain-
able hunting and trapping, referred to as defaunation or ‘empty for-
ests™™*0, PA assessments, and indeed biodiversity mapping in general,
that are based solely on habitat—and do not account for accessibility
to hunting and other extraction—can severely bias estimates of species
occurrence®, diversity* and even ecosystem function*.

Finally, although research (as described above) has investigated
the effects of PAs on biodiversity inside reserve boundaries, the influ-
ence of PAs onbiodiversity in the broader landscape remains unclear.
Reserve establishment could potentially support biodiversity in the
surroundinglandscapes. This could occur if the wildlife refugia create
population sources, such thatin-reserve individuals then disperse to
adjacentunprotected areas® (spillover). Such neighbourhood effects
couldalsobe generated by outreach and enforcement activitiesin the
vicinity of parks* reducing hunting and other extractive activities in
nearby areas as well. Conversely, PAs often simply displace human dis-
turbance frominside the reserve to nearby unprotected areas. Indeed,
the establishment of PAs has been observed to increase deforestation
andanimal harvestrates outside theboundaries, aphenomenon termed
‘leakage®*. There have been few assessments of whether spillover or
leakage tends to be the dominant process, so we still know little about
how PAs—particularly in hyper-diverse tropical regions—affect animal
diversity in the surrounding landscape.

Here we assess the efficacy of terrestrial PAs for conserving tropi-
cal mammal and bird diversity while de-confounding the effects of
3D forest structure and accessibility, and while evaluating spillover
versus leakage into surrounding unprotected areas. Moreover, we
assess how PAs contribute not just to SR but to the functional and

phylogenetic diversity of vertebrate communities**¢ (Fig.1). Whereas
many broad-scale biodiversity assessments rely on relatively crude
measures of biodiversity such as species distributions* or the coverage
of particular ecosystem types (for example, forest?), anthropogenic
impacts often have cascading effects on both the functional and phy-
logenetic diversity of taxa*. Functional richness (FR) represents the
variety of phenotypic traits that are likely to influence how speciesinter-
act with others around them and with their environment*. Although
the relationship between functional traits and ecological function is
notnecessarily straightforward*’, FR can be a proxy for the potential of
anassemblage to contribute toimportant processes such as herbivory
orseed dispersal*. Phylogenetic diversity (PD) measures the cumula-
tive evolutionary time embodied by a given assemblage®. Our study
isunique in assessing how PAs contribute to vertebrate conservation
while accounting for forest structure and accessibility. Past work® used
statistical matching to assess the efficacy of PAs at preventing habitat
conversion but not explicitly at protecting biodiversity. Other stud-
ies have assessed the effects of PA on biodiversity?'*'3%°, but without
de-confounding or statistical matching, or with a population-level
focus onasingle taxon®. Finally, to our knowledge, no other study has
assessed PA efficacy at protecting multiple facets of biodiversity and
community structure (thatis, SR, FR and PD) across multiple taxa, or
has evaluated spillover versus leakage patterns for vertebrates outside
terrestrial PAs.

We assessed these facets of vertebrate diversity across Southeast
Asia (Fig. 2 and Extended Data Fig. 2)—aregion with some of the high-
estlevels of biodiversity and gravest conservation threatsin the world.
For mammals, we used 1,365 camera stations (biological replicates;
42.4% inside PAs) in 65 study areas to detect 112 taxa. For birds, we
used 1,079 eBird sampling locations (20.1% inside PAs) to detect 1,361
bird taxa (Fig. 2). Data were cleaned, filtered and standardized to
ensure comparability across sites with different survey efforts and
data structures (Methods). To de-confound the effects of site acces-
sibility, we accounted for this factor using circuit theoretical models
parameterized with human travel speeds across different terrains and
the locations of population centres and transportation networks®*.
Other covariates might mediate how accessibility (effectively a
measure of potential hunting and other extraction pressures) would
translate into actual hunting pressure, notably socioeconomic fac-
tors such as poverty. We partially accounted for this by including the
human development index (HDI) (Methods) in our models. We also
note that prior work in Malaysian Borneo demonstrated that acces-
sibility alone (that is, even without socioeconomic covariates) was a
strong predictor of hunter detections on camera traps®. Similarly, as
noted, accessibility alone—as measured simply by the distance to the
nearest road or town—strongly predicts vertebrate abundance across
the tropics®.

We assessed 3D forest structure at the biodiversity sampling sites
using geostatistical interpolation (kriging; Methods) of GEDI forest
structure data for the study region. We generated the following 3D
structure metrics: (1) canopy height (as RH95 (relative height at 95%));
(2) plant area volume density between O and 5 m (PAVD), selected as
a proxy for the density of the forest understory; (3) cumulative plant
area index (PAI) from the ground to the top of canopy; (4) structural
complexity, measured as foliage height diversity (Shannon’s diversity
index) of the plant areaindex for 1-m height bins; and (5) proportional
cover (scored as: 0, completely open; 1, completely closed canopy).
These tended to be highly correlated, so we did notinclude them all
in our models. Univariate analyses showed that canopy height fit the
diversity data the best, so we included this in our models.

We found that PAs significantly enhanced all facets of bird diver-
sity. Bird sampling locations inside reserves tended to be less
accessible (logistic regression of PA status against accessibility:
B =-0.897, P« 0.001) and to have taller forest (PA status against
forest height: f=0.130, P« 0.001) than locations outside reserves,
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Fig.3|Allfacets of bird diversity are higher inside PAs than outside PAs.
a-c, Violin plots showing calculated SR (a), FR (b) and PD (c) acrosssites, including
variancein many covariates, and the per cent difference in diversity mean (AX).
Points and lines show mean ands.d., respectively. d-f, Estimated SR (d), FR

(e) and PD (f) (and mean difference between protected and unprotected sites)
from spatial mixed-effects regression (two-tailed) on propensity score-matched
data. Pointsandlines show meanands.e.m., respectively. Pvalues are shown
wheressignificant. Adjustments were not made for multiple comparisons. SR:
n=1,072;FR:n=1,074;and PD: n=1,073 biologically independent sites.

as is commonly observed owing to the biased placement of PAs in
remote areas?’. Using structural causal modelling®?* and propen-
sity score matching® (Methods) to de-confound these effects, we
still detected a strong influence of PA status on bird diversity. Esti-
mated bird SR, FR and PD were 19.2%, 7.4% and 13.1% higher, respec-
tively, inside than outside PAs (linear mixed-effects models (LMM);
all P<0.01; Fig. 3 and Supplementary Table 1), even after account-
ing for accessibility and forest structure. The enhanced bird SR
that we detected in PAs is nearly double the 10.6% enhancement
that Gray et al.’® found in their global synthesis. Birds detected at
PA sites included more large-bodied species (8 =12.492, P=0.001),
more predators of vertebrate ectotherms (8 =3.454, P=0.004),
more species occupying mid-to-high levels of the forest canopy
(8=4.505,P=0.018) and fewer scavengers (f =-2.817,P= 0.003) than
those at unprotected sites.

The effects of PAs on mammals were also strong but quite different
from those on birds. In contrast to the results for birds, no facet of
mammal diversity was significantly different inside versus outside
PAs (Supplementary Table 1). This was probably because even outside
PAs, mammal diversity remained high in nearby unprotected areas,
particularly adjacent to large PAs. This enhanced mammal diversity
outside large PAs rendered non-significant the pairwise differences
in diversity between ‘protected’ and ‘non-protected’ sites. Estimated
mammal SR, FRand PD outside PAs were 25.4%,193.7% and 23.8% higher,
respectively, when the nearest PA was large (more than 500 km?) than
when it was smaller (all P< 0.001; Fig. 4 and Supplementary Table 1).
Bird FR and PD outside PAs were also significantly higher near large
reserves (9.4%and 9.9% higher, respectively; Fig. 5) but these differences
were considerably smaller than those of mammals (Supplementary
Table 1). For sampling locations outside PAs, distance to the nearest
reserve was significantly associated with only one of the six diversity
metrics—bird SR was higher in proximity to PAs than farther away
(Supplementary Table1).

Insum, our results show that the legal designation of PAs, and not just
their biased placement, provides substantial and significant benefits
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Fig.4|Allfacets of mammal diversity outside PAs are higher nearlarge PAs
thannear thansmall PAs. a-c, Violin plots showing calculated SR (a), FR

(b) and PD (c) acrosssites, including variance in many covariates, and the per cent
differencein diversity means. Points and lines show mean ands.d., respectively.
d-f,Estimated SR (d), FR (e) and PD (f) (and mean difference between protected
and unprotected sites) from spatial mixed-effects regression (two-tailed)

on propensity score-matched data. Points and lines show meanands.e.m.,
respectively. Pvalues are shown where significant. Adjustments were not
made for multiple comparisons.SR:n=1,362;FR:n=1,362;and PD: n=1,360
biologicallyindependentsites. Large PAs are those with arealarger than

500 km?.

to Southeast Asian bird diversity. Our findings also show that large
PAs are associated with higher diversities of both mammals and birds
in surrounding unprotected areas, consistent with spillover rather
than leakage being the dominant pattern at the landscape scale. The
effects of PAs on birds inside parks and both taxa in the surrounding
landscape are probably explained, at least in part, by PAs limiting hunt-
ing. We statistically controlled for accessibility in our models—this
means that even at sites with equivalent potential hunting pressure
inside versus outside PAs, the sites inside the PAs had lower realized
hunting pressure. Enforcement, community engagement or other PA
management activities** may be reducing hunting activities even in
areas that are logistically accessible to hunters.

The potential spillover that we detected may be driven by density-
dependent dispersal of animals out of source populations inside PAs*,
with larger reserves being particularly effective by supporting larger
source populations. Spillover is frequently reported from marine PAs,
supporting fishing in nearby areas*, but such evidenceiis far more lim-
ited in terrestrial environments. It is important to note that spillover
in the marine PA context is measured as the movement of individuals
and biomass, with few studies assessing changes in overall diversity.
Indeed, our results may be conservative in that they focus on diversity
rather than the abundance dynamics of particular species. Hunting
and other threats will reduce abundance before they start to cause
the outright extirpations (or declines to such low levels that detec-
tionisunlikely) thatinfluence richness. The fact that we detected such
strong changesin occurrence (measured cumulatively, across species,
as changes in SR, FR and PD) means that any influences of PAs inside
(birds) and outside (mammals and birds) their boundaries are strong.
Butastechniquesimprove for abundance estimation for multiple spe-
cies atlarge spatial scales and high temporal resolutions®, biodiversity
monitoring in general and PA efficacy assessments in particular will
become more powerful. We also note that an alternative mechanism
for the patterns that we detected could be that large reserves are more
effective than smaller ones at attracting investment in conservation
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interventions such as outreach and enforcement**. Better under-

standing the mechanisms of biodiversity spillover from tropical PAs
may be very important for conservation and the achievement of the
UN30 x 30 goals.

We assessed diversity outside PAs as afunction of Euclidean distance
tothe nearestreserve;itis not entirely surprising that these variables
were not significantly related. Straight-line distance does not account
for how topography, forest quality, human infrastructure or hunting
might affect animal movement out of PAs and across the landscape,
and itis thus only a very crude metric of PA proximity. Future work
could explore declines in diversity with decreasing PA proximity—a
pattern predicted from the spillover hypothesis—using circuit theo-
retical movement models, as we did to estimate site accessibility to
humans while accounting for ease of movement through different
topographies and landscapes®?,

Based on prior research®?°, we were able to identify clear confound-
ing variables for our assessment of PA efficacy and to de-confound the
resulting analyses using structural causal modelling, propensity score
matching, and newly available data on the confounding variables. On
this basis, we suggest that PA designation enhances bird diversity.
For the assessment of PA effects outside their boundaries, potential
confounding and missing variables were less clear, so we cannot claim
thatlarge PAs cause (inametaphysical sense) increased diversity in the
surrounding landscape. But even demonstrating a predictive, proba-
bilistic relationship between PAs and diversity inside and outside their
boundaries suggests that expanding the PA network inaccordance with
30 x 30 goals should enhance bird and mammal diversity. This argu-
mentwould be negated, however, if high-diversity areas had been pro-
tected first, with newer PAs relegated to areas with successively lower
diversity. Such a pattern would imply that further expansions of the PA
network would be likely to occurin even lower diversity areas and thus
contribute little to conservation, but this scenario is not supported.
The year of designation of a PA was not significantly related to any
facet of bird (P value range 0.201-0.884) or mammal (P value range

0.200-0.877) diversity. Our predictions of increasing diversity with PA
coverage may beinaccurate interms of how the designation of any one
particular new PA will affect diversity; there are just too many contin-
genciesandidiosyncrasies for that level of prediction to be robust. How-
ever, at broader scales, our results show strong positive effects of PAs
onaverage diversity levels. This supports the notion thatif the region
develops the many new PAs that will be required to meet the 30 x 30
commitments, then these new areas will contribute cumulatively to
the conservation of bird and mammal diversity.

Our results can inform and improve implementation of the UN
30 x 30 agreement and the Convention on Biological Diversity’s post-
2020 Global Biodiversity Framework with regards to biodiversity moni-
toring. The vast majority of species are not visible from space—their
occurrence, abundance and diversity must be measured on the ground
and then, for spatial and temporal extrapolation, linked to remote sens-
ing data via predictive modelling®?. The essential biodiversity variables
(EBVs) approach was developed by the UN 2030 Agenda for Sustain-
able Development goals® to facilitate monitoring biodiversity trends
and evaluate management impact®. EBVs are intended to integrate
on-the-ground biodiversity information with remote sensing data>.
Our results advance the development, integration and monitoring of
EBVsrelated to species traits, community composition and ecosystem
structure rather than just distributions of a few target taxa. Further-
more, our results highlight the need toincorporate 3D forest structure
and proxies for hunting pressure into spatial biodiversity modelling
in order to explain trends in certain EBVs and formulate effective
management responses. Accessibility, especially if paired with socio-
economic and cultural mediating factors, can be a very useful proxy
for current hunting pressure for certain taxa*>¢. The distribution of
other species may be determined by past hunting pressure. Such his-
toricalinfluenceis often overlooked, but needs tobeincorporatedinto
spatial models, particularly for refugee species**—for example, tigers
(Panthera tigris) in Southeast Asia are currently relegated to remote,
hilly areas because they have been hunted out of their preferred habitat,
lowland plains and riparian areas. Whereas regional and global maps
are available for most conservation threats, robust regional maps of
hunting pressure have only recently emerged®~>°, These maps present
new opportunities for biodiversity monitoring and PA efficacy assess-
mentand could be updated dynamically over time, with investmentsin
new technology-based approaches to monitoring hunting (for example,
with acoustics or camera traps). We have made our potential hunting
pressure map for Southeast Asia publicly available, and our circuit
theory approach® could be applied to almost any region.

PAs havelongbeen the cornerstone of global biodiversity conserva-
tion, but our results suggest that reserve designation alone is insuf-
ficient for conserving biodiversity. Our findings are consistent with
management (rather than simple remoteness) enhancing vertebrate
diversity inside and outside PAs. But other studies have demonstrated
huge variance in management effectiveness®>>”'% with many PAs
being mere paper parks. Effective management of hunting presents
akey opportunity to improve PA effectiveness, as does designating
larger PAs that may enhance the spillover of animals (or conservation
measures) to surrounding landscapes. The designation of new, large
PAs could include traditional PAs such as national parks, but also the
variety of “other effective area-based conservation measures” that are
being explored as de facto means of increasing PA coverageinaccord-
ance with national and international targets®. We echo earlier sug-
gestions that expansion of PAs must be accompanied by substantial
investment in initiatives promoting hunting sustainability*®**, such
as capacity building for park staff and the creation of alternative liveli-
hoods for hunters. Investment by way of forest-based carbon financing,
with projects adhering to the Climate, Community, and Biodiversity
Standards, provides explicit provisions for biodiversity protection
and community livelihoods including active control of hunting and
encroachment, with such standards assessed during regular audits®°.
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Such measures can help ensure that reserves in less developed coun-
tries, and in the myriad areas susceptible to unsustainable hunting, can
achieve the same conservation outcomes asthose in more developed
and less hunted areas.
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Methods

Species observations, trait dataand phylogeny construction

We assembled camera trap data of mammals from across the region.
These data came from different research projects spanning 65 distinct
study areas within the region (Fig. 2 and Supplementary Table 2). In
all cases, cameras were unbaited, active 24 h per day, and attached to
treesat~0.3-0.6 m (depending on topography, vegetation understory
and other factors mediating the camera viewshed), heights capable of
obtaining pictures of animals of a wide variety of sizes. Cameras were
spaced ~1km apart in most study areas and -2.5 km apart in Vietnam.
Cameras were active for amedian 88 days (s.d. = 60.5; range 16-439).
In 9.3% of the 178,169 total photographic records it was impossible
to determine the exact species of Callosciurus, Herpestes (including
Urva), Hystrix, Muntiacus, Tragulus, Tupaia or the various species of
otters; we assigned these cases the average functional trait values
for each genus (for the FR calculation) and assigned the records to a
widespread member of each genus (for the PD calculation). We also
lumped unidentified murid rodents and squirrels, assigning them
to Maxomys whiteheadi and Callosciurus prevostii, respectively,
for FR and PD calculations. In total, we detected 112 taxa. For sites
with multiple years of sampling, we chose the most recent year for
analysis.

For birds, we used community science records from the eBird data-
base®’; these constitute species lists from surveys, with multiple surveys
per location used to estimate diversity. We collected all records from
‘stationary’ or ‘travelling’ survey protocols fromJanuary 2015 through
August 2021 for the study region (Fig. 2). We followed data cleaning
recommendations® ¢ by filtering the data to only include surveys
where: (1) all species were recorded; (2) the distance travelled during
the observation (for ‘travelling’ protocol) was <8.1 km; (3) the sam-
pling duration (for the ‘stationary’ protocol) was >5 min and <240 min;
(4) there were no more than 10 observers; and (5) the observation
started between 05:00 and 20:00 local time. Sampling locations had
amedian 23 samples (range 10-1,200; s.d. =105.6). We removed records
of domestic species and those with identifications that were ambigu-
ous as to genus. This resulted in a final dataset 0f 1,345,922 records
of' 1,361 taxa. Of these taxa, 1,262 were identified to species and the
remaining 7.3% assigned to awidespread congener that occurred at the
location.

For the FR calculations, we used data on traits from Wilman et al.®®
that could clearly be related to potential ecological functions. Specifi-
cally, for both taxa we used body size, forest stratum preference and
the proportion of the diet made up of invertebrates, vertebrate endo-
therms, vertebrate ectotherms, fish, scavenging, fruit, nectar, seeds,
and other plant materials. Variables were standardized to mean =0,
variance =1before FR analysis. For the bird genera and the mammal
groups listed above that were lumped at the genus or group level, we
used genus- or group-level average trait values.

For the PD calculations, we constructed consensus phylogenies
(including consensus branch lengths) of all detected birdand mammal
species from 1,000 trees for each taxon from the VertLife database®®.
Taxa identified only to genus level were added to the root nodes of
their genera. The resulting consensus trees were ultrametric, rooted
and dichotomous. We standardized taxonomic nomenclature between
the field data, traits data and phylogenies.

Variables

Tomeasure site accessibility, we calculated the circuit-theory-derived
accessibility (log;, transformed) of each sampling site to humans, based
onmulti-modal travel speeds (thatis, onfoot and by land vehicles) and
human population density from specified population centres across
different terrains and transportation networks. Thisis an extension of
the map of Deith and Brodie* for Malaysian Borneo to the whole study
area (Fig. 2). Previous work has shown that this predicts detections of

hunters on cameratraps in Malaysian Borneo very well*. While hunting
can be assessed via acoustic monitoring in some systems®, in much
of Asia harvest is done using snares, blowpipes or other silent means
and somay bebetter detected with cameratraps. This metric was very
weakly correlated with the human footprintindex® (r= 0.379 and 0.129
for bird and mammal sampling locations, respectively).

Site accessibility is a proxy for potential hunting pressure, but
realized hunting pressure will also be mediated by socioeconomic
factors. As a simple metric of socioeconomic level, we included the
human developmentindex®® (HDI) of each country. Inanalyses on the
full dataset, we included a binary variable indicating whether or not
the site was in a PA using the World Database on PAs®. For analyses on
the subset of sitesinside PAs, we replaced the binary variable with the
size of the PA (km?). For analyses on the subset of sites outside PAs, the
binary variable was replaced with the distance (km) to the nearest PA
and the size (km?) of that PA.

Toassesstherole of forest structure, we used five variables (described
in the main text) derived from the GEDI data* generated using kriging
tointerpolate the sample-based datato the exact locations of the biodi-
versity sampling sites. We selected ecologically relevant metrics from
the GEDI L2A (elevation and height metrics) and L2B (canopy cover
and vertical profile metrics) products (version 2; from 17 April 2019
to 12 April 2022). After filtering based on quality and degrade flags,
the average sampling density across the study region was 15 points
km™ We performed the spatial interpolation processes with the gstat
package” in R, We first derived separate empirical variograms for
each structural variable on each major landmass of the study region.
We optimized the model parameters with grid searches and selected
the best models based on weighted (withinverse square distance) least
squares fit. To determine an estimate of each variable at the exact loca-
tion of each species observation site, we performed local kriging with
aneighbourhood of the 5,000 closest valid GEDI samples. To map each
variable at each pixel across the study region, we performed local krig-
ing at the pixellocations with aneighbourhood of the 500 closest GEDI
samples’. Rasters of the interpolated, GEDI-derived forest structure
metrics are available (see ‘Data availability’).

We excluded samplinglocations that had undergone recent (2015-
2019) forest loss, from the global forest cover data in Hansen et al.?.
Field sampling (2015-2021) at some of our sites may have occurred
prior towhen GEDI datawere collected (2018-2021). Excluding recently
deforested sites removed the possibility of the field data having come
fromsitesthat were forested when field surveyed but thenlogged prior
to the GEDI overpass. All continuous variables were standardized to
mean = 0 and variance = 1before the linear mixed-effects modelling
described below.

Diversity estimation

For both birds and mammals, the sampling intensity varied across
locations and species were detected imperfectly. We accounted for
this by using rarefaction-extrapolation techniques, using the iNEXT
package”inR, to determine the estimated diversity for a standard-
ized sampling intensity ‘endpoint’. For mammals, we used aminimum
sampling intensity of 15 days, following Kays et al.”*, who suggested a
minimum of two weeks sampling for camera trap studies, after which
time the number of detected species rapidly plateaus. We set the sam-
pling endpoint at three times this number, as diversity extrapolation
is not considered reliable beyond triple the reference sample size™’.
Thus, our mammal diversity estimates should be viewed as the SR,
FR, or PD atagiven site as detected within a 45-day sampling window.
For birds, we set the minimum number of samples at a given location
equalto 10, which balanced the need for sufficient sampling to ensure
robust diversity estimation with the need to avoid throwing away exces-
sive data (that is, increasing the minimum number of samples to 15
would have necessitated throwing away 28% of sampling locations,
which could have biased results by increasing type Il error). Again, our
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sampling endpoint was set to three times the minimumsamplesize, so
our bird diversity estimates should be viewed as the SR, FR, or PD ata
given site as detected within a 30-day sampling window.

For SR, we generated a species x sample matrix populated by inci-
dence data. We calculated the increase in the PD metric*® across succes-
sive five-day sample intervals at each site using the picante’ package
inR and then used the asymptote of the curve as the estimated PD for
thatsite. We calculated the FR metric” using the FD** package inR; FR
values are not necessarily monotonically related to sampling intensity
or species diversity, sowe used the maximum FR value ateach site rather
than an asymptotic approximation. Diversity estimates are available”
(see ‘Data availability’).

Thefield sampling was reasonably complete, as evidenced by the cor-
relation (Pearson’sr=0.91and 0.79 for birdsand mammals, respectively)
and high correspondence (Extended DataFig.1) between the number of
species detected at sampling locations and the number estimated from
rarefaction-extrapolation. The median per cent difference between
observed and estimated SR across sampling locations was 23.5%.

Structural causal modelling

We used structural causal modelling (SCM) to assess PA efficacy while
de-confounding the effects of site accessibility and forest structure.
SCM also allowed us to produce a set of predictor variables for each
analysis that would result in unbiased coefficient estimation—while
many variables could potentially affect diversity, adjusting for all of
theminanalytical models can bias results by introducing, rather than
minimizing, conditional associations®®. We constructed a directed
acyclic graph (Extended Data Fig. 2) showing potential causal path-
ways among variables and used DAGGITY® to identify the sufficient
adjustment sets (that is, suites of covariates) necessary to include in
the models in order to generate unbiased estimates of the effects of
exposure variables on outcome variables.

Linear mixed-effects modelling and propensity score matching
We used the variables identified in the SCM in linear mixed-effects
models to assess PA efficacy and determine the environmental fac-
tors related to bird and mammal diversity. We accounted for spatial
autocorrelationin two ways. First, we use mixed-effects models with an
exponential correlation structure based on the covariance in pairwise
distances amongsites, following Hakkenberg & Goetz®. Second, we also
included (for mammals) study area nested within country as random
effectsbecause the datawere highly spatially clustered and to account
for the potential for other (un-modelled) national-level anthropogenic
factorsto affectdiversity. For birds, we used country alone asarandom
effect because the sampling locations were not clustered into discrete
study areas. The SCMidentified forest structure’as a critical variable to
includeinthe modelsin order to de-confound our PA efficacy analysis.
We determined which GEDI variable to use to represent forest structure
based onunivariate analyses, as we could notinclude all of themin the
same model because they were highly correlated. Canopy height fit
the diversity databetter (thatis, had lower Aikake information criterion
values) than the other GEDI variables and we included that variable in
thelinear models. All variables included in the same model had correla-
tion coefficients r < 0.6. We checked regression diagnostics to assess
linear relationships between residuals and fitted values and normality
oftheresiduals. Inafew cases (see Supplementary Table 1) we removed
some observations to improve normality of the residuals. We assessed
the leverage of each observation using the hatvalues functioninR. In
allmodels, the highest-leverage observations were well below 2 (maxi-
mum values for the different analyses were 0.21-0.40 and 0.86-0.90
for birds and mammals, respectively).

To assess PA efficacy, we ran linear mixed-effects models in a
statistically matched framework. Matching was conducted using
nearest-neighbour propensity score matching without replace-
ment, estimating the propensity score with logistic regression of the

treatment (PA status) on the covariates to achieve the best possible
balance of covariate values (except protected status) between sites
inside versus outside PAs**, We matched the datasets based on canopy
height, site accessibility, HDIand location (Universal Transverse Mer-
cator (UTM) easting and northing) using the Matchlt® package inR.
We began with a nearest-neighbor matching with logit link function,
but this yielded somewhat poor covariate balances. We then used
full matching on the propensity score estimated with a probit link
function; thisyielded muchbetter balances (shownin Supplementary
Table 3). We ran linear mixed-effects models on the matched data-
sets, ensuring that comparisons between sites inside versus outside
PAs were on datasets that were otherwise as similar as possible in
forest structure, accessibility and human influence, while also being
as geographically matched as possible. We ran these models in the
nlme® package in R. We tested whether high-diversity areas had
been protected first, with newer PAs relegated to areas with succes-
sively lower diversity. We ran mixed-effects linear regressions using
the same predictor variables as above but also including PA ‘year of
designation’.

Toassess support for spillover versus leakage patterns, we modelled
diversity as a function of the predictor variables described above on
the subset of sites outside PAs (n = 621and 774 for birds and mammals,
respectively). In these models, we replaced the PA status binary vari-
able with either the size of the nearest PA or (in separate models), the
distancetothe nearest PA. These data were analysed using propensity
score-based statistical matching to achieve covariate balances, with full
matchingand probit link functions as described above. Covariate bal-
ances are showninSupplementary Table 3 and model results (standard-
ized beta coefficients and Pvalues) in Supplementary Table 1. The point
of propensity score matching is to achieve balanced sets of covariate
values between two sets of data—thus the response variables in such
analyses are binary. Despite broad consensus that large PAs are neces-
sary for conserving certain vulnerable elements of biodiversity®*%¢, and
evidencethat they provide ahigher per-unit return-on-investment than
smaller PAs¥, surprisingly little research allows us to determine size
thresholdsin PA performance - in other words, to ascertain ‘how large
are large PAs?’. A prior assessment of PA effectiveness at conserving
natural habitat in other tropical regions suggests that strong habitat
disturbance can occur ~-12 km into the boundary of PAs®®, Assuming
circular reserves, this would translate to a minimum of ~500 km? for
aPAto maintain a core of little-disturbed habitat. Therefore, we used
500 km? as a threshold distinguishing ‘large’ from ‘small’ PAs in our
analysis. After establishing that diversity was higher near large than
small PAs based on this threshold, we ran sensitivity analyses where
we re-ran the models but with different PA size thresholds. Diversity
was generally enhanced in large relative to small PAs at alternative
thresholds of 400, 600, and 1,000 km?, particularly for mammals
(Supplementary Table 4).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Data used in the mixed-effects modelling analysis are available at
https://doi.org/10.6084/m9.figshare.22527298.v1. Rasters (1-kmresolu-
tion) for the study area for the GEDI-derived forest structural covariates
and estimated site accessibility are available at https://rcdata.nau.edu/
geode_data/SEA _vertebrate_diversity rasters/.

Code availability

Codes for analysis (in the R programming language) are available at
https://doi.org/10.5281/zenod0.7796347.
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Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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